

INSTALLATION MANUAL

Vertical Wall Mount Installation – Models With DX Cooling and Electric or Hot Water Heat AHW1 and AHW2 SERIES

LIST OF SECTIONS

1 – General	7 – Thermostat Wiring and Connections
2 – Safety, General, Dimensional & Model Number Nomenclature	8 – Blower Motor Speed Selection
3 – Air Handler Installation6	9 – Final System Checkout and Start-Up
4 – TXV, Flowrator Distributor, and Refrigerant Lines	10 – Blower Performance28
5 – Hydronic (Hot Water) Heat	11 – Wiring Diagrams29
6 – Line Voltage Wiring	

LIST OF FIGURES

1 – Air Handler Dimensions4
2 – Clearance – Access for Service6
3 – Closet Clearances7
4 – Air Handler Top Dimensions – AHW18
5 – Air Handler Duct Mounting Flange Dimensions8
6 – Air Handler Base Dimensions8
7 – Typical Wall Mount Installation8
8 – Wall Mount Panel Door9
9 – Typical Wall Mount Installation with Wall Panel Door – AHW19
10 – Typical Wall Mount Installation with Wall Panel Door – AHW29
11 – Side View For Typical Wall Mount Installation w/ Wall Panel Door – AHW19
12 – Side View For Typical Wall Mount Installation w/ Wall Panel Door – AHW2 10
13 – Wall Panel Door Dimensions 10
14 – Wall Panel Door Frame Dimensions10
15 – Wall Panel Door Frame Depth 10
16 – Typical 1" Pleated Air Filter 10
17 - Refrigerant Lines For Air Handler Below Outdoor Unit
18 – TXV Bulb Placement 12
19 – TXV Sensing Bulb Location
20 – Typical TXV Connections

21 – TXV Installed in Air Handler 22 – Flowrator Distributor	
22 – Flowfator Distributor	
24 – Typical Hot Water Tank and Refrigerant Line Connections	
25 - Typical Hot Water Tank Connections	19
26 – Line Voltage Wire Knockout & Tstat Wire Entrances – AHW1	
27 – Line Voltage Wire Knockout & Tstat Wire Entrances – AHW2	
 28 – Pull-Out Disconnect Location – AHW1 29 – Component Locations – Electric Heat Control Box 	
30 – Component Locations – Electric Heat Control Box	
31 – Component Locations – Hydronic Heat Control Box	
32 - Heat/Cool Low Voltage Wiring Connections - Single Tfmr	
33 - Heat/Cool Low Voltage Wiring Connections - Separate Tfmrs	24
34 - Heat Pump Low Voltage Wiring Connections - Single Tfmr	
35 – Heat Pump Low Voltage Wiring Connections – Separate Tfmrs	
36 – Constant Torque Motor Terminals	
 37 – No Electric Heat Wiring Diagram	
39 – 8 & 10 kW Electric Heat Wiring Diagram	
40 – Hydronic Heat Wiring Diagram	

LIST OF TABLES

1 – Air Handler Specifications42 – Dimensional Data43 – Model Number Nomenclature54 – Clearances to Combustibles65 – AHW2-18, 24-2N and AHW2-18, 24-3N Hot Water Capacities166 – AHW2-18, 24-4N and AHW2-30, 36-2N Hot Water Capacities177 – AHW2-30, 36-3N and AHW2-30, 36-4N Hot Water Capacities188 – Wiring Requirements – 208/240 VAC – No Electric Heat20	10 - Electric Heater Element Capacities.2111 - Wiring Requirements - 115 VAC - Hydronic Heat.2112 - Low Voltage Wire Gauge and Max Lengths.2313 - Air Handler Low Voltage Pigtail Wire Colors/Tstat Connections.2414 - Typical Heat/Cool T-stat Wire Color Codes & Connections.2515 - Typical Heat Pump T-stat Wire Color Codes & Connections.2516 - Constant Torque Motor Terminals - Electric & No Heat Models2617 - Constant Torque Motor Terminal - Hydronic Heat Models26
8 – Wiring Requirements – 208/240 VAC – No Electric Heat	17 – Constant Torque Motor Terminal – Hydronic Heat Models

SECTION 1: GENERAL

The following list includes important facts and information regarding this air handler.

- 1. Models with electric heat and not heat are rated for 208/240 VAC, 60 Hz, 1-Phase.
- 2. Models with hydronic heat are rated for 115 VAC, 60 Hz, 1-Phase.
- 3. Air handler control circuit is rated at 24 VAC, 60 Hz.
- 4. Air handler size varies by model.
- 5. Four-wire thermostat operation for heat/cool applications.

- 6. Seven wire thermostat operating for heat pump applications.
- 7. Air handler is designed for both cooling only and heat pump applications.
- 8. Air handler is designed for upflow applications only.
- 9. Air handler must not be operated without the access door installed.
- 10. Air handler is listed by ETL for the United States and Canada.

SAVE THIS MANUAL FOR FUTURE REFERENCE

AHW DX Cooling With or Without Electric Heat

AHW DX Cooling With or Without Hot Water Heat

This is a safety alert symbol. When you see this symbol on labels or in manuals, be alert to the potential for personal injury. Understand and pay particular attention to the signal words DANGER, WARNING, or CAUTION.

DANGER: Indicates an imminently hazardous situation, which if not avoided, will result in death or serious injury.

WARNING: Indicates a potentially hazardous situation, which if not avoided, **could result in death or serious injury.**

CAUTION: Indicates a potentially hazardous situation, which if not avoided, **may result in minor or moderate injury.** It is also used to alert against unsafe practices and hazards involving property damage.

🛕 IMPORTANT

The Clean Air Act of 1990 bans the intentional venting of refrigerant (CFC's and HFC's) as of July 1, 1992. Approved methods of reclaiming must be followed. Fines and/or incarceration may be levied for non-compliance

Improper installation may create a condition where the operation of the product could cause personal injury or property damage.

Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage. Refer to this manual for assistance; or for additional information consult a qualified contractor, installer, or service agency.

FIRE OR ELECTRICAL HAZARD

Failure to follow the safety warnings exactly could result in serious injury, death, or property damage. A fire or electrical hazard may result causing property damage, personal injury or loss of life.

This product must be installed in strict compliance with the installation instructions and any applicable local, state, and national codes including, but not limited to; building, electrical, and mechanical codes.

Safety Requirements

This air handler should be installed in accordance with all national and local building/safety codes and requirements, local plumbing or waste water codes, and other applicable codes. In the absence of local codes, install in accordance with the following codes.

- Standard for the Installation of Air Conditioning and Ventilating Systems (NFPA 90A)
- Standard for the Installation of Warm Air heating and Air Conditioning Systems (NFPA 90B)
- National Electrical Code (NFPA 70)
- Canadian Electrical Code, Part I (CSA C22.2) or ANSI/NFPA No. 70
- All local codes (State, City, and Township)

NOTE: All applicable codes take precedence over any recommendation made in these instructions. SunTherm assumes no responsibility for units installed in violation of any code or regulation.

- 1. Refer to the Figure 5 of this manual for the bottom return air opening dimensions for installations with the return air entering the bottom of the air handler. The plenum must be installed according to the above listed codes or the instructions in this manual.
- 2. Refer to Figure 1, Figure 4, and Table 2 of this manual for the outlet duct flange dimensions on top of the air handler. The outlet duct must be installed according to the instructions in' this manual.

- 3. These models are not ETL listed or approved for installation into a manufactured (mobile) home.
- 4. Provide clearances from combustible materials as shown in Table 4: Clearances to Combustibles and Figure 3: Closet Clearances.
- 5. Provide clearances for servicing ensuring service access is allowed for the control box, electric elements, hot water coil and the blower (See Figure 2: Clearance Access for Service).
- 6. Confirm that the power supply complies with the electrical characteristics listed on the air handler rating plate.
- 7. Failure to carefully read and follow all instructions in this manual can result in malfunction of the air handler, death, personal injury, and/or property damage.
- 8. The air handler must be installed so the electrical components are protected from water.
- 9. Installing and servicing heating/cooling equipment can be hazardous due to electrical components.
- 10. Only trained and qualified personnel should install, repair, and service heating/cooling equipment. Untrained service personnel can perform basic maintenance functions such as cleaning of exterior surfaces and replacing the air filters. Observe all precautions listed in this manual and on the labels when installing and servicing this air handler.
- 11. These instructions cover minimum requirements and conform to existing national standards and safety codes. In some cases, these instructions exceed certain local codes and ordinances, especially those who have not kept up with changing home and/or HUD construction practices. These instructions are to be followed and are the minimum requirement for a safe installation.
- 12. The size of the system should be based on an acceptable heat loss calculation for the structure. ACCA Manual J or other approved methods may be used.
- 13. Models with electric heat use a nominal 208 or 240 VAC, 1-Phase, 60-Hz power supply.
- 14. Models with hydronic heat use a nominal 115 VAC 1- Phase, 60 Hz power supply.

NOTE: DO NOT CONNECT THIS AIR HANDLER TO A 50 HZ POWER SUPPLY OR A VOLTAGE ABOVE 250 VOLTS FOR ELECTRIC HEAT MODELS OR ABOVE 132 VOLTS FOR HYDRONIC HEAT MODELS.

15. Ground connections must be securely fastened to the ground lug located inside the control box.

▲ WARNING

ALWAYS SHUT OFF ELECTRICAL POWER AT THE PULL-OUT DISCONNECT (ELECTRIC HEAT MODELS) LOCATED ON THE AIR HANDLER AND TURN OFF THE CIRCUIT BREAKERS IN THE MAIN ELECTRICAL PANEL BEFORE PREFORMING ANY SERVICE ON THE AIR HANDLER.

\Lambda WARNING

Hot water from a boiler used to satisfy heating requirements can be heated to temperatures of 180°F. Parts containing water this hot can quickly scald. Use extreme caution when servicing or performing maintenance on any parts containing hot water.

GENERAL INFORMATION

This air handler provides the flexibility for installation in most upflow or vertical wall mount applications and can be configured with or without electric heat or with hydronic heat. The constant torque motor provides a selection of air volume to match most applications. The air handler may be positioned for bottom air return or front return.

Inspection

As soon as the air handler is received, it should be inspected for possible damage during transit. If damage is evident, the extent of the damage should be noted on the carrier's freight bill. A separate request for inspection by the carrier's agent should be made in writing. Before installing the air handler, check the cabinet for screws or bolts which may have loosened in transit. There are no shipping or spacer brackets that need to be removed before installation.

Check to be sure all accessories such as heater kits and coils are available. Installation of these accessories should be accomplished before the air handler is set in place or the connecting of the wiring, ductwork, or piping.

See local distributor for more information. Mortex Products, Inc assumes no liability for freight damage.

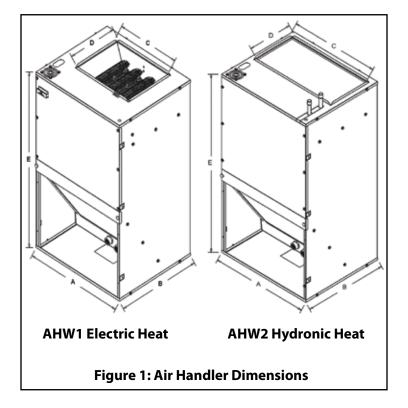

Model No.	Nominal Tons	Blower Code	Blower Motor HP	Cooling Blower Speed Tap	Blower Size	Nominal Cooling CFM @ 0.30 inwc ESP With Coil	Nominal Heating Speed (CFM) @ 0.30 inwc ESP / Speed Tap	Electric Heater Kw	Voltage / PH / HZ	Thermostat Circuit Voltage / PH / HZ	Max. External Static Duct Pressure (in. W.C.)
AHW1	1.5 - 2.0	LM	1/3	5	10 x 7T	850	600/2*	0 - 8	208-240 / 1 / 60	24/1/60	0.30
AHW1	2.5	LG	1/3	5	10 x 7T	1000	750 / 1	0 - 8	208-240 / 1 / 60	24/1/60	0.30
AHW1	3	LI	1/2	5	10 x 8T	1250	975 / 1	0 - 10	208-240 / 1 / 60	24/1/60	0.30
AHW2	1.5 - 2.0	LK	1/2	5	10 x 8T	1100	830 / 1	N/A	115 / 1 / 60	24/1/60	0.30
AHW2	2.5 - 3.0	LL	1/2	5	12 x 8T	1235	796 / 1	N/A	115 / 1 / 60	24/1/60	0.30

Table 1: Air Handler Specifications

*Indicates minimum heating speed tap for that blower motor code. Do not use a lower speed tap for the heating speed as it will result in insufficient airflow and possible safety limit tripping.

Available Blower Motors

- 1. Blower Motor 1/3 HP 5 Speed Constant Torque
- 2. Blower Motor 1/2 HP 5 Speed Constant Torque

	Cabinet Dimensional Data in inches										
Model	А	В	С	D	E						
AHW1	22	15.75	14	11	36						
AHW2	22	15.75	20	10	39						

Table 2: Air Handler Dimensional Data

AHW Vertical Wall Mounted Air Handler

DX Cooling / Electric Heat / Hot Water

Air Handler

			<u>AWH</u>	1	<u>24</u>	1	<u>C</u>	LG	<u>03</u>	D	
Unit Type											
AHW - Vertical Wall Mount											
<u>Series</u>	1										
1 - DX Coil with Electric Heat 2 - DX Coil with Hot Water Hea	at										
Nominal Cooling BTUs											
Example: 24 - 24,000 btu											
Slant Coil Configuration (Rows, FPI, I	Rifled/Smooth,	Fin Type, E	<u>tc.)</u>							
Confidential											
Unit Voltage											
A - 115V (Hot Water Heat)											
C - 208/240V (Electric Heat)	_										
Blower Motor & Blower P	<u>ackage</u>										
LG - 1/3 HP, 208/240V, Constau LM - 1/3 HP, 208/240V, Constau LI - 1/2 HP, 208/240V, Constau LK - 1/2 HP, 115V, Constant Tou LL - 1/2 HP, 115V, Constant Tou	nt Torque, wit t Torque, with rque, with 10	ith 10 x 7T blower a h 10 x 8T blower as) x 8T blower assem	assembly sembly ably								
Heating Capacity											
00 - Electric Heating Capacity 2P - 2 Row Hot Water Coil 3P - 3 Row Hot Water Coil 4P - 4 Row Hot Water Coil 2N - 2 Row Hot Water Coil No 3N - 3 Row Hot Water Coil No 4N - 4 Row Hot Water Coil No	Pump Pump										
TXV Code											
D - R410a 1.5 thru 2.5 tons Y - R410a 3 ton											
Options / OEM Manufact	urers Code	┣───									
B - Breaker											
Standard Features:											

Factory Installed TXV Factory Installed Time Delay Relay (TDR) Factory Installed Disconnect Front "Return Air" Application

Optional Features:

BR - Solid Front Panel (Bottom "Return Air" Application)

Table 3: Model Number Nomenclature

SECTION 3: AIR HANDLER INSTALLATION

The air handler can be installed in a closet, an alcove, a framed in wall mount, or in a basement. The air handler must be level to allow for proper condensate drainage.

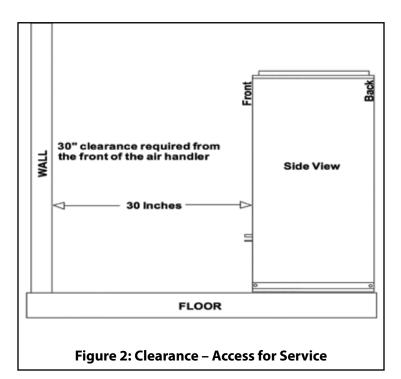
Air Handler Orientation (Upflow Only):

This air handler is designed to be installed in an upflow air flow position only. It must not be installed in horizontal or downflow applications.

Location

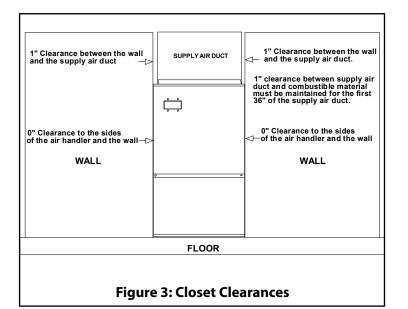
Access for servicing is an important factor in the location of any air handler. Provide a minimum of 30 inches in front of the air handler for access to the control box, heating elements, hot water coil, blower and air filters. This access may be provided by a closet door or by locating the air handler so that a wall or partition is not less than 30 inches from the front access panel.

Location is usually predetermined. Check with owner's or dealer's installation plans before installation. If a location has not been determined, consider the following in choosing a suitable location.


- 1. Select a location with adequate structural support, space for service access, clearance for return and supply duct connections.
- 2. Normal operating sound levels may be objectionable if the air handler is placed directly over or under some rooms such as bedrooms, study, etc.
- 3. Caution should be taken to locate the air handler so that supply ducts are about the same length to achieve even air distribution of supply air to the living spaces.
- Locate the air handler where electrical supply wiring can be easily routed to main electrical panel and where electrical wiring will not be damaged.
- 5. Locate the air handler where the thermostat wiring can be easily routed to the thermostat and where the wiring will not be damaged.
- 6. Locate the air handler where the refrigerant lines can be easily routed to the outdoor unit.
- 7. Locate the air handler where the condensate lines can be easily routed to an available drain or to the exterior of the building. Route condensate drain piping so it does not obstruct access to the air filter or servicing of the air handler.
- 8. When the indoor coil is installed in a draw-through application as is the case with this air handler, a negative pressure will be created in the condensate drain system. To assure proper condensate drainage and to prevent condensate from being drawn into the air handler, the primary and secondary (overflow) condensate drains must be trapped as described in **Section 5: Air Handler Installation** and Figure 25 in these instructions. If the secondary drain is not used, it must be capped.
- 9. The exterior surface of air handler cabinet will likely sweat when it is installed in a non-conditioned space such as an attic or garage. The installer must install an auxiliary drain pan under

on all air handlers installed in a non-conditioned space to prevent damage from condensation runoff.

10. It is recommended that air handlers installed in non conditioned spaces be insulated on the exterior of the entire cabinet, including the front access panel with one (1) inch thick fiberglass with the vapor barrier on the outside. Some states, cities and counties require additional insulation to be \ installed on the exterior casing of the air handler installed in an unconditioned space to prevent sweating. Refer to the state, city, county or local code for insulation requirement to be sure the installation is in compliance.


Clearances

This air handler is approved for zero (0) inches clearance to combustible material on any part of the air handler exterior casing and the inlet or outlet ducts providing no electric heater is being used. There is a one (1) inch clearance requirement on the supply air duct or plenum when an electric heater is installed in the air handler. Refer to Table 4 and Figure 4 for clearance to combustibles information.

	FRONT OF FURNACE											
Model	Top (in)	Back (in)	Sides (in)	Wall Panel Door (in)	Alcove (in)	Closet Door (in)	Duct (in)					
AHW	0	0	0	6	30	6	1					

Table 4: Clearances to Combustibles

Return Air and Filter Requirements

Provisions must be provided for the air in the living spaces to return to the air handler. Failure to comply may cause a reduction in the amount of return air available to the blower, causing reduced air flow and improper heating or cooling of the living space. The reduced air flow may also cause the air handler to cycle on the heating over-temperature limit and premature heating element failure.

For wall mount installations, the front return air opening and internal return air filter is utilized. For closet installations, the front return air opening and internal return air filter may also be utilized if the closet door has a sufficiently sized return air grille with at least 6 inches of clearance between the closet door and the front of the air handler to allow the free flow of return air into the air handler. The closet door grille must have a minimum amount of total free area opening for the return air to pass through unrestricted.

For AHW Air Handlers With 1/3 HP Blower Motor

Minimum 200 in² free return air grille area opening
 For AHW Air Handlers With 1/2 HP Blower Motors
 Minimum 250 in² free area return air grille opening

Recommended Closet Door Return Grille Size

800 CFM – 20 X 20 Grille – 324 in² 1000 CFM – 20 X 25 Grille - 414 in² 1200 CFM – 25 X 25 Grille - 414 in²

NOTE: Installation codes may limit the installation to a single level residence when no return air duct is used.

Closet installations may also utilize the bottom return air opening with a return duct located in the floor or platform under the air handler. Basement installations require the air handler to be installed on a return air base or enclosed platform for the return air duct to connect to.

Bottom return applications require the bottom return opening block-off panel to be removed and the installation of a field fabricated sheet metal block-off panel to cover the front return opening. The bottom return opening block-off panel can be removed by cutting the tabs that attach it to the air handler. For bottom return applications, a return air filter grille attached to the return duct may be used instead of the factory installed internal air filter.

NOTE: If a return air filter grille or return air base with an integral filter is utilized, remove the factory internal filter when the air handler is installed.

If a return air filter grille or return air base with integral filter is utilized, follow the minimum filter sizing requirements below.

Standard Disposable Air Filter @ 300 ft/min or less

800 CFM = 20 x 20 x 1 1000 CFM = 20 x 25 x 1 1200 CFM = 20 x 30 x 1 **Pleated Disposable Air Filter @ 500 ft/min or less** 800 CFM = 16 x 16 x 1 1000 CFM = 18 x 20 x 1 1200 CFM = 20 x 20 x 1

Supply Air Duct

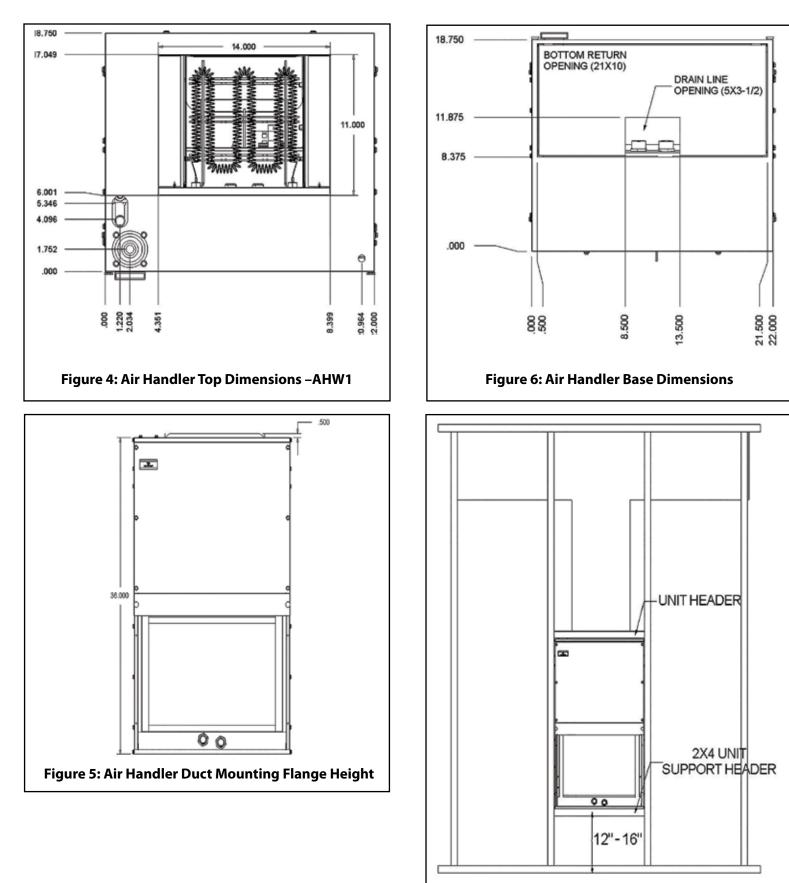
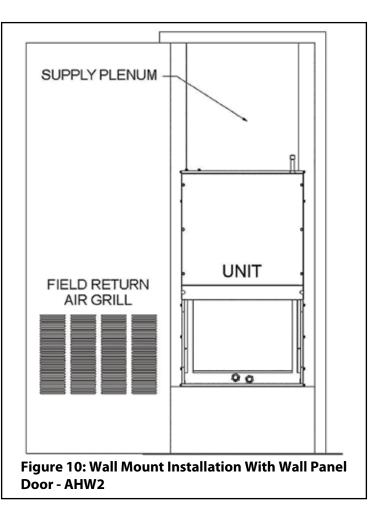
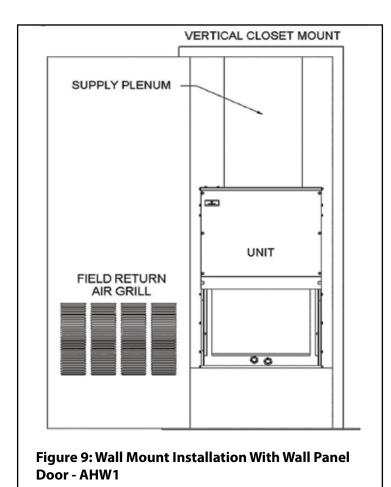
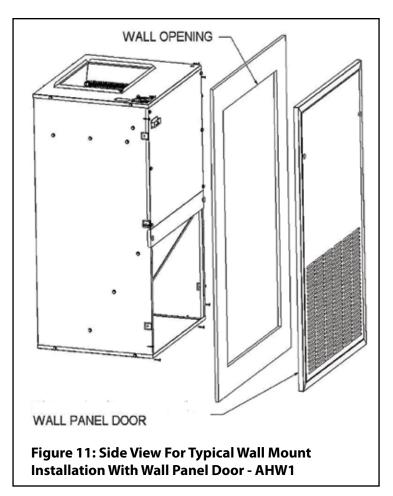
The supply air outlet is located on the top of the air handler. Connect a supply air duct/plenum system to the supply air outlet flanges around the supply air outlet. See Figure 1, Figure 4, and Table 2 for the supply air opening dimensions. Use a non-tape sealant such as mastic or an aerosol sealant to prevent duct leakage.

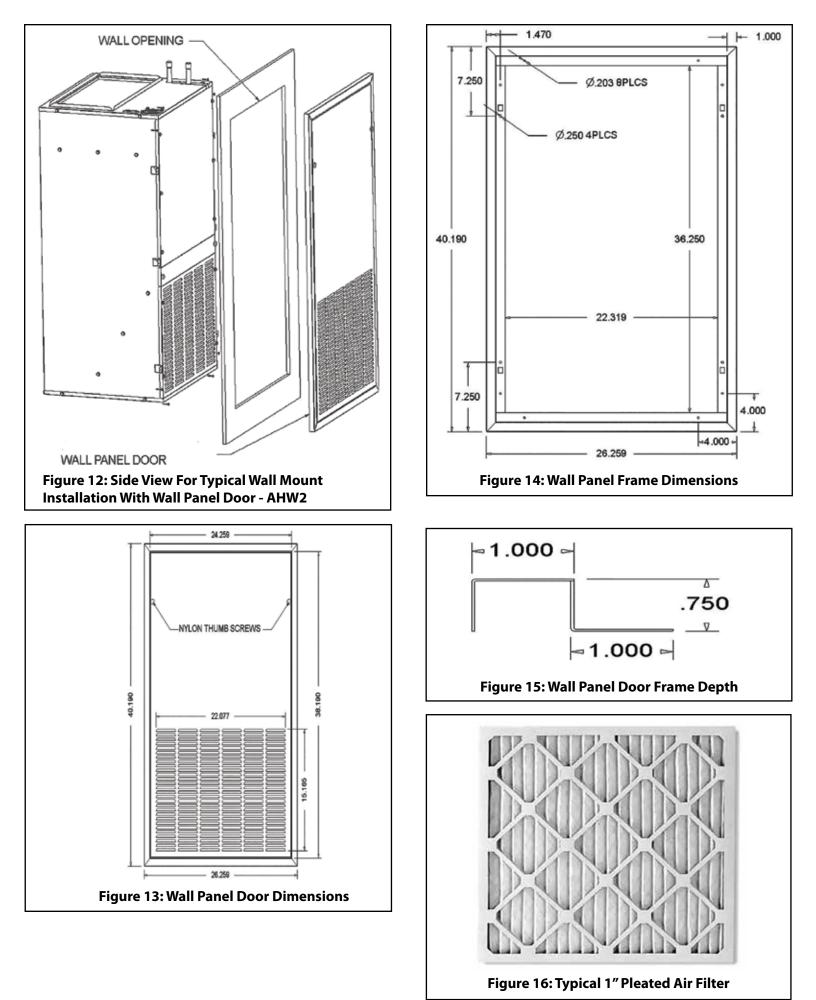
Wall Mount Installations

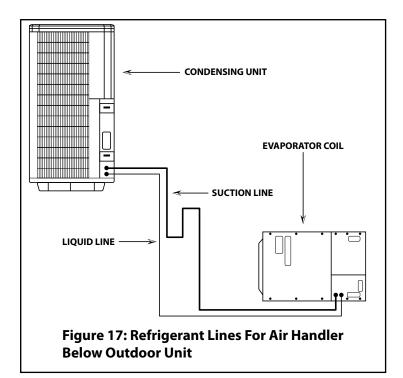
This air handler is designed for recessed mounting in a wall or for hanging on the wall in a closet. Recessed mounted air handlers must be supported by 2x4 header between 2x4 studs as shown in Figure 8 below. Use the factory provided nail holes in the front edge of the air handler to attach cabinet to the framed opening. Be careful to locate the air handler so the drywall surface will be flush with edges of cabinet, permitting the wall panel accessory to be attached to cover the opening and edges of the drywall. Consider the routing of the electrical wiring, refrigerant lines, condensate lines, and hot water piping when framing the opening and cut the necessary holes prior to installing the air handler.

Closet Installations With Bottom Return Air

For closet installations that utilize the air handler bottom return air opening, the air handler may be installed directly on the floor or on a platform framed within the closet with a return air opening cut in the floor or platform for the return air plenum or duct. Cut the holes in the floor or ceiling for the refrigerant tubing, electrical wiring, thermostat wiring, and outdoor unit control wiring and cut the hole(s) for the condensate drain line(s) in the floor or wall prior to installing the air handler. Bottom return installations require the use of a non-tape sealant such as mastic or an aerosol sealant to seal between the air handler and the floor or platform to prevent air leakage.

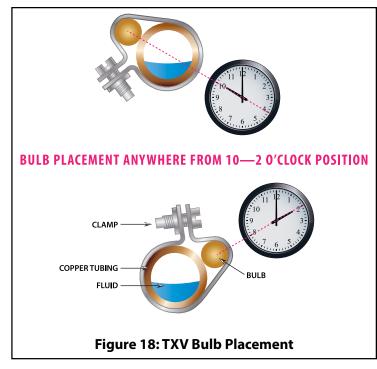

Figure 7: Typical Wall Mount Installation


SECTION 4: TXV, FLOWRATOR DISTRIBUTOR, AND REFRIGERANT LINES

DX Refrigerant Piping:

Air handlers with DX type indoor coils require liquid and suction lines sized in accordance with outdoor unit manufacturer's instructions. The refrigerant lines enter the air handler through the slot located on the left side of the air handler top behind the electrical power entrance and connect to the suction and liquid line stubs located to the left of the blower. The ends of the copper stubs must be cut off with a tubing cutter and deburred prior to connecting the refrigerant lines.

NOTE: The air handler is shipped with a pressurized nitrogen holding charge. Remove the cap from the pressure port located on the suction line stub and depress the Schrader valve to release the pressure before cutting the ends off of the stubs. Refrigerant lines should be soldered with silver solder or high temperature brazing alloy. The suction line must be insulated to avoid condensate from forming and dripping off. Armaflex (or equivalent) with 3/8" (1 cm) minimum wall thickness is recommended. Suction line insulation in applications with severe conditions such as hot and/or high humidity require 1/2" (1.3 cm) minimum wall thickness. If outdoor unit is installed above air handler coil, oil traps are required at equal intervals along suction line (See Figure 19). Horizontal suction lines should slope downward 1 inch for every 20 feet toward outdoor unit. Dry nitrogen must be flowed through refrigerant lines during soldering operation to prevent copper oxide from forming inside the tubing which can plug TXV inlet screens and filter driers


- Install 1 oil trap for a height difference of 15 ft to 25 ft (4.6 m to 7.6 m) between indoor and outdoor units.
- Install 2 oil trap for a height difference of 26 ft to 50 ft (7.9 m to 15.2 m) between indoor and outdoor units.
- Install 3 oil trap for a height difference of 51 ft to 100 ft (15.5 m to 39.5 m) between indoor and outdoor units.
- Install 4 oil trap for a height difference of 101 ft to 150 ft (30.8 m to 45.7 m) between indoor and outdoor units.

SPECIAL INSTRUCTIONS FOR COILS WITH THERMAL EXPANSION VALVES (TXV)

The thermal expansion valve (TXV) used in this air handler has a built-in check valve making it heat pump capable. The external equalizer line attached to the TXV has a female flare nut with built in Schrader valve depressor that attaches to the Schrader valve port located on the indoor coil suction manifold.

A TXV has a thermostatic element separated from the valve body by a diaphragm and is designed to regulate the rate at which refrigerant flows into the indoor coil.

The best location for the TXV sensing bulb is on a horizontal section of the suction line tube and positioned between 10 o'clock and 2 o'clock on the tube. (See Figures 8 and 9).

NOTE: The sensing bulb must never be located at the bottom of the suction line due to the possibility of oil and refrigerant laying in the bottom of the pipe causing false signals.

The sensing bulb must be able to sense the temperature of the superheated suction vapor and must therefore not be located in a position that will expose it to extraneous heat/cold. The sensing bulb must be insulated to isolate it from the surrounding air. The TXV must be the proper size and type to achieve the performance ratings of the system.

NOTE: If a non-bleed type TXV is used, the outdoor unit may require a hard start kit to allow the compressor to start under load.

How the TXV Controls Superheat

The TXV is a precision device designed to regulate the rate at The

The ideal location for the TXV sensing bulb is on a horizontal section of the suction line tube and positioned between 10 o'clock and 2 o'clock on the tube. (See Figures 20 and 21).

NOTE: The sensing bulb must be able to sense the temperature of the superheated suction vapor and must therefore not be located in a position that will expose it to extraneous heat/cold. The sensing bulb must be insulated to isolate it from the surrounding air. The TXV must be the proper size and type for the applications to achieve the performance ratings of the system.

NOTE: If a non-bleed type TXV is used, the outdoor unit may require a hard start kit to allow the compressor to start under load.

How the TXV Controls Superheat

The TXV is a precision device designed to regulate the rate at which liquid refrigerant flows into the evaporator. This controlled flow is necessary to provide optimum performance and to prevent the return of liquid refrigerant to the compressor.

The TXV separates the high pressure and low-pressure sides of a

refrigeration or air conditioning system. Liquid refrigerant enters the TXV under high pressure, but the pressure is reduced when the flow of the refrigerant is restricted by an internal moving pin and port.

It is important to remember that the TXV only controls the level of superheat of the refrigerant in the suction line. The TXV is not designed to control air temperature, head pressure, capacity, suction pressure, or humidity. Attempts to adjust the TXV to control any of these system variables will lead to poor system performance and possible compressor failure.

The TXV responds to the temperature of refrigerant gas as it leaves the evaporator. This temperature is detected by the sensing bulb which is located near the evaporator outlet. The TXV also responds to the refrigerant pressure within the evaporator, which is transmitted to the TXV by an equalizer tube connected to the coil suction manifold. By responding to these variables, the TXV maintains a predetermined superheat level exiting the evaporator which maintains proper system stability, performance, and reliability.

TXV TROUBLESHOOTING

The thermostatic expansion valve (TXV) is like the carburetor in a car engine. It opens and closes to allow the correct amount of refrigerant flow through the system. When the TXV isn't working properly, the capacity and efficiency of the system is reduced. If a faulty TXV is suspected, perform the following tests:

Connect refrigerant gauges to the system and check that the refrigerant pressures, liquid subcooling and suction superheat levels are correct according to the outdoor unit charging chart. Subcooling at the outdoor unit liquid service valve is normally around 10°F and superheat at the outdoor unit suction service valve is normally between 8-12°F, but these can vary depending on the manufacturer and model of the outdoor unit.

Check to see if the indoor airflow through the system is correct. Check to see if the indoor and outdoor coils and indoor air filters are dirty. Clean dirty coils and clean/replace dirty air-filters as necessary before measuring air-flow and checking pressures, superheat, and subcooling.

Make sure the refrigerant charge in the system is correct. This step may require weighing the refrigerant in the system. Once refrigerant charge weight has been adjusted as necessary, recheck the pressures, subcooling and superheat. If these values are still not correct, the TXV may be defective or the TXV inlet strainer or the liquid line filter dryer is plugged with debris.

A good way to determine if the TXV is defective is to remove the TXV's sensing bulb from the suction line and check the pressures, subcooling, superheat again. No change in the pressures, subcooling, and superheat levels is an indication the TXV is defective. Another test that can be performed is to place the sensing bulb in ice water and recheck the pressures, superheat, and subcooling levels. If these values don't change, the TXV is likely defective.

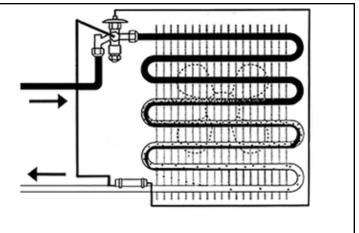
Additional TXV Troubleshooting Information Low Suction Pressure – High Superheat POSSIBLE CAUSES:

- 1. Undersized TXV
- 2. TXV superheat adjustment too high
- 3. High indoor coil pressure drop due to internal restriction

- 4. TXV sensing bulb installed on bottom of suction line
- 5. Restricted or capped TXV external equalizer tube
- 6. Improper TXV external equalizer location (must be located on suction manifold after the last feeder tube)
- 7. Low refrigerant charge
- 8. Plugged liquid line filter dryer
- 9. Plugged TXV inlet strainer
- 10. Low outdoor ambient temperature

High Suction Pressure – Low Superheat POSSIBLE CAUSES:

- 1. Oversized TXV
- 2. TXV seat leakage
- 3. TXV superheat adjustment too low
- 4. Improper TXV sensing bulb installation
 - a. Poor thermal contact with suction line (loose clamp) b. Uninsulated sensing bulb
 - c. Warm location
- 5. Bad compressor (low capacity)
- 6. Incorrectly located external equalizer line (must be located on suction manifold after the last feeder tube)


Low Suction Pressure – Low Superheat

POSSIBLE CAUSES:

- 1. Low system load:
 - a. Insufficient indoor airflow
 - b. Dirty indoor air filters
 - c. Return air too cold
 - d. Indoor coil icing or frosting
- 2. Poor air distribution over indoor coil
- 3. Improper indoor/outdoor coil internal volume balance on heat pump systems (improper air handler/outdoor unit match up; indoor coil too big or too small causing incorrect refrigerant charge balance between cooling and heating modes)
- 4. Oil trapped in indoor coil

Things to Check Before Replacing TXV

- Slowly loosen the flare nut on the TXV external equalizer connected to the suction line port with a flare nut. If there is a large pressure release when the nut has been loosened, tighten the nut. If this results in a slight pressure release or no pressure release; the Schrader valve stem is not being depressed. Install an anti-blow back fitting to the external equalizer line of the TXV to depress the Schrader valve stem and check for proper operation of the TXV.
- 2. Remove the sensing bulb from the suction line and hold in a warm hand. The high side pressure should drop and low side pressure should increase as the TXV opens. Place the sensing bulb in ice water. The high side pressure should increase and the low side pressure should decrease as the TXV closes. If the pressures do not change, the TXV is faulty.

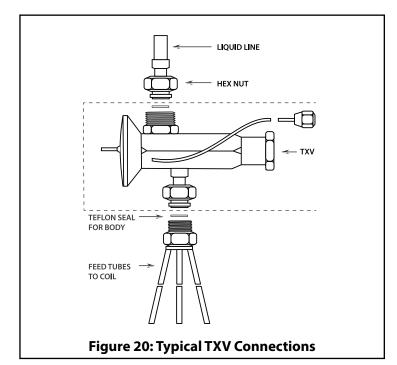
Figure 19: TXV Sensing Bulb Location

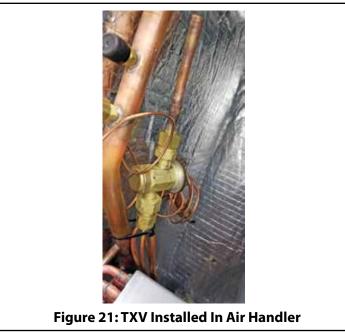
FLOWRATOR TO TXV CONVERSION:

While thermal expansion valves can be factory installed, they are normally available in kit form for field installation. For kit version, follow the installation instructions provided with the kit. Normally these can be field installed before system is charges without requiring cutting and brazing. **BE SURE FLOWRATER PISTON HAS BEEN REMOVED FROM THE FLOWRATER DISTRIBUTOR BODY PRIOR TO INSTALLATION OF EXPANSION VALVE.**

FIELD INSTALLED TXV KIT INFORMATION

R72DB0053HX: R-410A, 1.5 – 2.5 Ton, 15% Bleed, Inlet: Male Rotolock. Outlet: Female Swivel Nut **R72DB0054HX:** R-410A, 3.0 – 5.0 Ton, 15% Bleed, Inlet: Male Rotolock, Outlet: Female Swivel Nut


WARNING


Coil is pressurized with nitrogen. Relieve pressure before installing TXV by depressing Schrader valve on coil suction manifold.

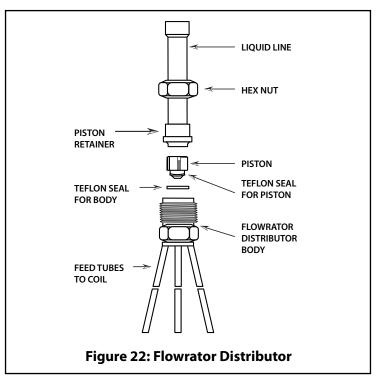
Field Installed TXV Installation Procedure

- 1. Remove the cap on Schrader valve port on coil suction manifold.
- 2. Depress the Schrader valve to relieve the pressure inside the coil.
- 3. Only after coil pressure has been relieved, turn the female swivel nut counter-clockwise to separate it from the distributor.
- 4. Remove the piston orifice from the flowrator distributor assembly using a small diameter wire or paper clip.
- 5. As shown in Figure 10, the TXV assembly must be installed between the distributor and the liquid line connector.
- 6. Attach the TXV by connecting the female swivel nut on TXV outlet to the flowrator distributor (aligning Teflon seal first) and *torque swivel nut to 10-30 ft. lbs.*
- 7. Attach the liquid line connector with female swivel nut to male rotalock fitting on TXV inlet (aligning Teflon seal first) and *torque swivel nut to 10-30 ft. lbs.*
- 8. Attach equalizer tubing with 1/4" female flare nut that includes depressor to the male Schrader port on the coil suction manifold and **torque nut to 10-30 ft. lbs.**

- 9. Install the TXV bulb to the suction line using the two bulb clamps furnished with kit.
 - a. The sensing bulb should be installed on a horizontal run of the suction line if possible and should be positioned between 10 o'clock and 2 o'clock as shown in Figure 8.
 - b. If the sensing bulb is installed on a vertical run of the suction line, the bulb should be located at least 6 inches away from any bend and on the side of the tube that is above the inside of the bend. On vertical run bulb installations, the bulb should be positioned with the bulb capillary tube at the top.
 - c. The bulb should be insulated using thermal insulation to protect it from the effect of the surrounding ambient temperature.
- 10. After completing the TXV installation, leak check all TXV fittings and thoroughly evacuate the coil through the service access fittings on the outdoor unit liquid and suction service valves prior to charging the system with refrigerant.

SPECIAL INSTRUCTIONS FOR COILS WITH FLOWRATOR DISTRIBUTOR ASSEMBLIES

The sizing of the orifice piston should be based on the rated capacity of the outdoor unit and air handler match-up.


Summit provides capacity performance ratings that match both same size and upsized air handlers with specific manufacturer's outdoor units. Consult the local Summit distributor for the proper size orifice piston to be used for a specific outdoor unit model number. The factory installed orifice piston size is marked on the flowrator distributor assembly and the air handler carton.

Failure to install the proper size orifice piston can lead to poor system performance and possible compressor damage. A variation of one piston size smaller or larger is not normally critical. Mortex/Summit reserves the right to substitute a factory installed piston one size smaller or greater if the piston size ordered is out of stock. A selection of replacement orifice pistons is available from the local Summit distributor.

ORIFICE PISTON REPLACEMENT

If the flowrator is being used instead of a TXV, the piston must be installed oriented as shown in Figure 24 in the distributor body and the existing liquid line attached to the flowrator distributor.

- 1. Remove the cap on Schrader valve port on coil manifold.
- 2. Depress the Schrader valve to relieve the pressure inside the coil.
- 3. Only after coil pressure has been relieved, turn the female swivel nut counter-clockwise to separate it from the distributor.
- 4. Replace the orifice piston with the correct size piston for the application. Make sure the tapered end of the piston is facing the feeder tubes on the distributor body.
- 5. Turn the female swivel nut on clockwise the flowrator distributor (aligning Teflon seal first) and torque swivel nut to 10-30 ft. lbs.
- 6. After completing the installation of the correct size orifice piston, leak check the flowrator distributor fitting and thoroughly evacuate the system through the service fittings on the outdoor unit liquid and suction service valves.

CONDENSATE DRAIN PIPING:

The air handler coil drain pan has one ¾" NPT female connection and one ¾" NPT female secondary connection located in the return air compartment. Piping from each fitting used is to have 2" minimum trap (See Figure 25) and each run in such a manner as to provide enough slope for adequate drainage to a visible area. Do not pipe these two fittings together into a common drain. If a secondary drain is not installed, the secondary drain connection must be capped.

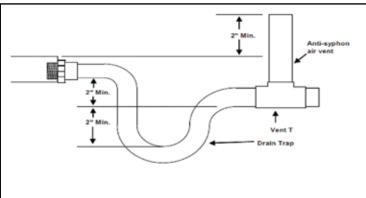


Figure 23: Typical Condensate Trap

M WARNING

This air handler must not be located where water can cause damage to the adjacent area if the condensate drain pan should overflow or if any condensate drain connections should leak.

When such locations can't be avoided, a suitable auxiliary drain pan must be installed under the air handler and connected to an adequate drain. The auxiliary drain pan should be at least 2" greater in length and width than the air handler dimensions and should be at least 1.5" deep.

The manufacturer of this air handler is not liable for any water damage related to the air handler.

SECTION 5: HYDRONIC (HOT WATER) HEAT

CHILLED AND HOT WATER PIPING

All water pipes must be supported independent of coils to prevent vibration and stress on coil headers. Swing joints or flexible fittings must be provided to absorb expansion and contraction strains. Rigid piping reduces the effectiveness of vibration isolators. Coil water pipes must be adequately vented in order to prevent air binding. Air handlers are provided with manual air vents mounted through the manifold panel.

Chilled Water Piping

Supply and return chilled water piping to the coil should be ³/₄" ID up to 42,000 BTU/Hr, 1" on air handlers greater than 42,000 BTU/ Hr. Water piping must always be connected so that the entering water is on the leaving air side of the coil.

Hot Water Piping

If a residential water heater is used for space heating water, do not exceed a distance of 70 feet between the air handler and the water heater. The water heater should be the quick recovery type. Air handler and water heater must be located indoors and not subject to freezing temperatures.

Total hot water piping should not exceed 140 feet. All hot water piping to the coil should be copper and ³/₄" ID and 7/8" OD. CPVC or PEX piping may be used in applications where the water temperature does not exceed 150°F. It is recommended that a water isolation valve and a union be placed in the water lines to and from the coil that is near the coil for serviceability, repair or replacement of the coil.

A thermal expansion tank is recommended on any closed loop system to relieve thermal expansion due to pressure increase.

NOTE: Refer to Filling Hydronic Heating System With Water, Purging Air From System, and System Startup in SECTION 9: FINAL SYSTEM CHECK-OUT AND START-UP for instructions on filling the system with water, purging the air from the system, and checking for leaks once the air handler installation has been completed.

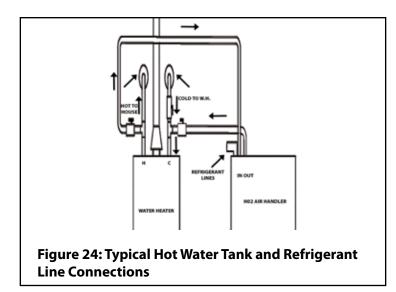
Toxic chemicals used for treatment of boilers or nonpotable water heating appliances must never be introduced into a potable water space heating system.

"Massachusetts requires an electronically controlled pump timer that activates the pump every 6 hours for 60 seconds and limits the distance between the water heater and the air handler to 50 feet max."

WARNING

When system requires water at temperatures higher than required for other uses, a means such as a mixing valve shall be installed to temper the water for those uses in order to reduce the potential for a scald hazard.

			Perfo				Water NCE DATA		oils				
HOT WATER WALL MOUNT MODEL NO.				°F ENTERI		CITIES @ MPERATU MPERATUF						PRESS. DROP WATER	PRESS. DROP AIR
	100°F	110°F	120°F	130°F	140°F	150°F	160°F	170°F	180°F	CFM	GPM	(FT-WTR)	(IN-WC)
	9,071	12,188	15,342	18,528	21,741	24,979	28,238	31,516	34,809		2.0	0.68	
	10,069	13,590	16,983	20,486	24,014	27,564	31,132	34,717	38,317	0.40	3.0*	1.39	0.200
	10,660	14,291	17,951	21,637	25,344	29,071	32,815	36,573	40,344	840	4.0	2.32	0.208
	11,055	14,811	18,593	22,397	26,221	30,063	33,920	37,790	41,671		5.0	3.45	
	11,338	15,183	19,051	22,940	26,846	30,768	34,704	38,652	42,610		6.0	4.76	
	8,826	11,857	14,923	18,018	21,141	24,286	27,451	30,634	33,831		2.0	0.68	1
	9,763	13,097	16,462	19,854	23,270	26,706	30,160	33,630	37,112	785	3.0*	1.39	0.185
	10,315	13,827	17,365	20,926	24,509	28,110	31,726	35,356	38,998	705	4.0	2.32	0.105
AHW 2-18/24-2N	10,682	14,310	17,961	21,633	25,324	29,031	32,752	36,485	40,229		5.0 6.0	3.45 4.76	
LI	10,945 8,309	14,654 11,158	18,386 14,037	22,136 16,943	25,903 19,873	29,684 22,822	33,478 25,790	37,283 28,773	41,098 31,769		2.0	0.68	
1/2HP, 10x8T,	9,124	12,234	15,373	18,534	21,716	22,822	23,790	31,358	34,599		3.0*	1.39	
20″ FH x 10″ FL, 2 Row,	9,124	12,254	16,146	19,452	22,776	24,913	29,468	32,833	36,208	680	4.0	2.32	0.146
4 Circuit, 10 FPI	9,911	13,272	16,654	20,054	23,469	26,898	30,339	33,791	37,252		5.0	3.45	
	10,135	13,565	17,014	20,034	23,959	20,898	30,953	34,465	37,985		6.0	4.76	
	7,801	10,471	13,168	15,888	18,630	21,389	24,163	26,950	29,750		2.0	0.68	
	8,505	11,400	14,319	17,258	20,215	23,187	24,103	29,170	32,176		3.0*	1.39	
	8,910	11,935	14,979	18,041	21,118	24,208	27,310	30,422	33,542	590	4.0	2.32	0.116
	9,176	12,283	15,409	18,550	21,704	24,869	28,045	31,230	34,422		5.0	3.45	
	9,365	12,503	15,713	18,909	22,113	25,334	28,562	31,797	35,039		6.0	4.76	
	6,850	9,186	11,544	13,919	16,310	17,715	21,131	23,558	25,994		2.0	0.68	
	7,370	9,873	12,392	14,927	17,474	20,033	22,602	25,179	27,763		3.0*	1.39	
	7,664	10,259	12,869	15,497	18,124	20,767	23,418	26,076	28,741	450	4.0	2.32	0.074
	7,855	10,508	13,176	15,854	18,541	21,237	23,940	26,649	29,364		5.0	3.45	
	7,989	10,684	13,390	16,107	18,833	21,565	24,304	27,048	29,798		6.0	4.76	
	11,453	15,387	19,368	23,388	27,433	31,528	35,639	39,773	43,925		2.0	0.55	
	12,860	17,256	21,693	26,168	30,675	35,209	39,767	44,347	48,944		3.0*	1.14	0.311
	13,693	18,356	23,057	27,791	32,554	37,341	42,151	46,979	51,823	840	4.0	1.89	
	14,244	19,083	23,955	28,857	33,785	38,736	43,705	48,692	53,694		5.0	2.81	
	14,637	19,600	24,593	29,612	34,656	39,720	44,801	49,898	55,009		6.0	3.89	
	11,139	14,963	18,830	22,735	26,674	30,640	34,631	38,643	42,674		2.0	0.55	
	12,452	16,704	20,996	25,322	29,679	34,061	38,465	42,890	47,331		3.0*	1.14	
	13,222	17,721	22,255	26,821	31,413	36,028	40,663	45,315	49,983	785	4.0	1.89	0.278
	13,729	18,389	23,081	27,800	32,543	37,307	42,089	46,886	51,698		5.0	2.81	
	14,090	18,865	23,666	28,493	33,341	38,209	43,092	47,990	52,900		6.0	3.89	
AHW 2-18/24-3N	10,469	14,058	17,684	21,343	25,032	28,747	32,482	36,237	40,008		2.0	0.55	
LI 1/200 10-0T	11,592	15,543	19,530	23,546	27,587	31,651	35,735	39,834	43,949		3.0*	1.14	
1/2HP, 10x8T, 20″ FH x 10″ FL,	12,240	16,398	20,586	24,801	29,038	33,295	37,568	41,857	46,159	680	4.0	1.89	0.219
3 Row,	12,662	16,954	21,273	25,614	29,976	34,354	38,749	43,156	47,575		5.0	2.81	
5 Circuit, 10 FPI	12,961	17,347	21,756	26,185	30,633	35,096	39,573	44,062	48,562		6.0	3.89	
	9,804	13,159	16,547	19,964	23,407	26,872	30,355	33,855	37,369		2.0	0.55	
	10,755	14,416	18,106	21,821	25,558	29,314	33,087	36,874	40,673		3.0*	1.14	
	11,295	15,127	18,984	22,863	26,762	30,676	34,605	38,546	42,498	590	4.0	1.89	0.173
	11,644	15,587	19,550	23,533	27,532	31,546	35,573	39,611	43,658		5.0	2.81	
	11,890	15,908	19,946	24,000	28,070	32,152	36,246	40,350	44,462		6.0	3.89	
	8,544	11,457	14,396	17,356	20,335	23,331	26,341	29,364	32,397		2.0	0.55	
		12,342	15,489	18,654	21,836	25,031	28,237	31,455	34,680		3.0*	1.14	
	9,215	12,312					· · ·						0.111
	9,215 9,585	12,828	16,088	19,364	22,653	25,953	29,263	32,582	35,909	450	4.0	1.89	0.111
			1		22,653 23,168	25,953 26,533	29,263 29,907	32,582 33,289	35,909 36,678	450	4.0 5.0	1.89 2.81	0.111


Table 5: AHW2-18, 24-2N and AHW2-18, 24-3N Hot Water Heating Capacities

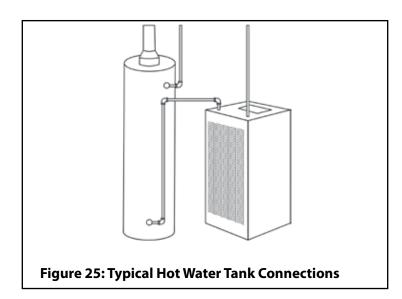

HOT WATER				HE HOT WA	ATING PE	RFORMA	Water NCE DATA					PRESS.	PRESS
WALL MOUNT MODEL NO.					NG AIR TE WATER TEM							DROP WATER	DROI AIR
MODEL NO.	100°F	110°F	120°F	130°F	140°F	150°F	160°F	170°F	180°F	CFM	GPM	(FT-WTR)	(IN-W
	13,458	18,060	22,709	27,397	32,117	36,867	41,641	46,434	51,246	CIM	2.0	0.75	(IN-WC)
	15,168	20,334	25,543	30,788	36,064	41,368	46,694	52,042	57,405		3.0*	1.54	
	16,158	21,644	27,168	32,725	38,310	43,920	49,550	55,199	60,862	840	4.0	2.56	0.415
	16,803	22,494	28,220	33,975	39,756	45,559	51,380	57,218	63,070		5.0	3.80	
	17,256	23,091	28,957	34,850	40,765	46,700	52,653	58,620	64,601		6.0	5.24	
	13,073	17,542	22,053	26,602	31,182	35,789	40,420	45,069	49,735		2.0	0.75	
	14,655	19,642	24,669	29,730	34,821	39,937	45,074	50,229	55,399		3.0*	1.54	
	15,561	20,840	26,155	31,500	36,871	42,265	47,678	53,106	58,550	785	4.0	2.56	0.37
AHW2-18/24-4N	16,148	21,614	27,111	32,635	38,184	43,751	49,337	54,937	60,550		5.0	3.80	
LI	16,559	22,155	27,779	33,427	39,096	44,784	50,487	56,204	61,932		6.0	5.24	
1/2HP, 10x8T,	12,248	16,429	20,646	24,897	29,175	33,478	37,801	42,140	46,495		2.0	0.75	
20″ FH x 10″ FL,	13,574	18,185	22,832	27,506	32,206	36,927	41,667	46,422	51,190		3.0*	1.54	
4 Row,	14,318	19,168	24,048	28,952	33,879	38,825	43,786	48,761	53,749	680	4.0	2.56	0.29
5 Circuit, 10 FPI	14,794	19,795	24,821	29,870	34,938	40,023	45,122	50,233	55,356		5.0	3.80	
	15,125	20,230	25,357	30,505	35,669	40,849	46,042	51,245	56,458		6.0	5.24	
	11,424	15,317	19,242	23,197	27,175	31,174	35,191	39,222	43,267		2.0	0.75	
	12,522	16,769	21,045	25,346	29,667	34,006	38,361	42,728	47,108		3.0*	1.54	
	13,126	17,565	22,029	26,514	31,017	35,535	40,067	44,610	49,163	590	4.0	2.56	0.231
	13,508	18,068	22,649	27,247	31,862	36,490	41,130	45,781	50,439		5.0	3.80	
	13,771	18,414	23,075	27,751	32,442	37,144	41,858	46,580	51,310		6.0	5.24	
	9,855	13,203	16,574	19,966	23,376	26,801	30,239	33,689	37,147		2.0	0.75	
	10,590	14,171	17,117	21,389	25,021	28,665	32,320	35,984	39,655		3.0*	1.54	
	10,980	14,683	18,403	22,136	25,882	29,638	33,402	37,175	40,954	450	4.0	2.56	0.14
	11,221	15,001	18,793	22,597	26,411	30,235	34,066	37,903	41,747		5.0	3.80	
	11,386	15,216	19,058	22,909	26,770	30,639	34,514	38,395	42,281		6.0	5.24	
	10,072	13,544	17,061	20,617	24,209	27,830	31,477	35,146	38,836		2.0	0.68	0.329
	11,344	15,233	19,164	23,132	27,132	31,160	35,212	39,284	43,376	1 1 1 0	3.0*	1.39	
	12,119	16,257	20,433	24,643	28,882	33,146	37,433	41,738	46,060	1,110	4.0	2.32	
	12,641	16,947	21,287	25,657	30,053	34,472	38,912	43,369	47,841		5.0	3.45	
	13,020	17,446	21,903	26,387	30,895	35,424	39,971	44,535	49,112		6.0	4.76	
	9,805	13,181	16,601	20,258	23,548	27,067	30,609	34,173	37,757		2.0	0.68	
	11,000	14,767	18,575	22,416	26,288	30,186	34,106	38,047	42,004	1,030	3.0*	1.39	0.29
	11,722	15,722	19,758	23,824	27,918	32,036	36,173	40,329	44,501	1,050	4.0	2.32	0.29
	12,207	16,364	20,550	24,765	29,005	33,266	37,545	41,841	46,150		5.0	3.45	
AHW2-30/36-2N	12,559	16,825	21,121	25,441	29,783	34,146	38,525	42,919	47,326		6.0	4.76	
LL	9,514	12,788	16,102	19,452	22,833	26,240	29,670	33,121	36,588		2.0	0.68	
1/2HP, 12x8T,	10,629	14,266	17,940	21,646	25,381	29,140	32,900	36,718	40,532	950	3.0*	1.39	0.25
20″ FH x 10″ FL,	11,297	15,150	19,034	22,948	26,887	30,848	34,828	38,824	42,835	,,,,	4.0	2.32 3.45	0.23
2 Row,	11,745	15,741	19,765	23,815	27,887	31,979	36,089	40,214	44,351		5.0	4.76	
4 Circuit, 10 FPI	12,068	16,165	20,289	24,435	28,602	32,787	36,987	41,202	45,428		6.0		
	9,218	12,387	15,594	18,834	22,103	25,397	28,713	32,048	35,399		2.0	0.68	
	10,254	13,759	17,299	20,869	24,466	28,084	31,722	35,378	39,049	875	3.0*	1.39	0.22
	10,870	14,574	18,308	22,069	25,852	29,656	33,478	37,314	41,165	5,5	4.0	2.32	0.22
	11,282	15,117	18,978	22,863	26,769	30,693	34,633	38,586	42,552		5.0	3.45	
	11,578	15,505	19,458	23,431	27,423	31,431	35,454	39,489	43,536		6.0	4.76	
	8,872	11,919	15,001	18,114	21,253	24,416	27,598	30,799	34,014		2.0	0.68	
	9,820 10,379	13,174 13,913	16,559 17.474	19,972 21,058	23,408 24,664	26,866 28,288	30,341 31,929	33,832 35,582	37,336 39,248	795	3.0* 4.0	1.39 2.32	0.18
	10,379	14,403	17,474 18,078	21,058	24,664	28,288	32,969	35,582	40,497		4.0 5.0	3.45	
F	10,731	14,405	18,510	21,775	26,078	29,223	52,909	50,727	TU,H9/		5.0	4.76	

Table 6: AHW2-18, 24-4N and AHW2-30, 36-2N Hot Water Heating Capacities

			Perfo		e Data ATING PE				Coils				
HOT WATER					TER CAPA	-						PRESS.	PRESS
WALL MOUNT					NG AIR TE							DROP	DROF
MODEL NO.					WATER TEN							WATER	AIR
	100°F	110°F	120°F	130°F	140°F	150°F	160°F	170°F	180°F	CFM	GPM	(FT-WTR)	(IN-WO
	12,718	17,099	21,537	26,024	30,552	35,118	39,714	44,339	48,986		2.0	0.55	
	14,552	19,541	24,585	29,675	34,808	39,975	45,174	50,398	55,647		3.0*	1.14	
	15,672	21,026	26,429	31,876	37,362	42,880	48,428	53,999	59,592	1,110	4.0	1.89	0.494
	16,429	22,025	27,668	33,351	39,068	44,816	50,590	56,388	62,204		5.0	2.81	
	16,977	22,747	28,560	34,409	40,291	46,201	52,136	58,090	64,064		6.0	3.89	
	12,383	16,647	20,963	25,326	29,729	34,167	38,635	43,129	47,646		2.0	0.55	
	14,097	18,927	23,807	28,732	33,696	38,693	43,719	48,770	53,843		3.0*	1.14	
	15,136	20,301	25,514	30,768	36,057	41,377	46,723	52,093	57,482	1,030	4.0	1.89	0.43
AHW 2-30/36-3N	15,834	21,223	26,655	32,124	37,626	43,156	48,710	54,285	59,878		5.0	2.81	
LL	16,336	21,886	27,473	33,095	38,747	44,424	50,123	55,843	61,578		6.0	3.89	
1/2HP, 12x8T,	12,017	16,151	20,335	24,563	28,829	33,128	37,456	41,808	46,181		2.0	0.55	
20" FH x 10" FL,	13,607	18,263	22,968	27,714	32,495	37,309	42,148	47,012	51,894		3.0*	1.14	
3 Row,	14,560	19,525	24,533	29,579	34,657	39,764	44,896	50,048	55,219	950	4.0	1.89	0.38
5 Circuit, 10 FPI	15,198	20,365	25,573	30,815	36,086	41,383	46,702	52,041	57,397		5.0	2.81	
5 Circuit, 10 FP1	15,654	20,967	26,316	31,696	37,103	42,533	47,984	53,452	58,936		6.0	3.89	
	11,641	15,642	19,690	23,779	27,905	32,061	36,244	40,450	44,677		2.0	0.55	
	13,108	17,589	22,116	26,680	31,278	35,904	40,555	45,229	49,920		3.0*	1.14	
	13,979	18,741	23,544	28,381	33,248	38,140	43,056	47,991	52,943	875	4.0	1.89	0.333
	14,558	19,505	24,487	29,501	34,542	39,607	44,691	49,794	54,911		5.0	2.81	
	14,971	20,050	25,159	30,297	35,459	40,644	45,846	51,065	56,298		6.0	3.89	
	11,198	15,043	18,931	22,858	26,817	30,807	34,820	38,855	42,909		2.0	0.55	
	12,528	16,807	21,126	25,480	29,864	34,275	38,709	43,162	47,631		3.0*	1.14	
	13,310	17,839	22,404	27,001	31,625	36,272	40,940	45,624	50,325	795	4.0	1.89	0.28
	13,825	18,518	23,244	27,997	32,774	37,573	42,389	47,222	52,068		5.0	2.81	
	14,191	19,001	23,838	28,701	33,586	38,489	43,410	48,344	53,291		6.0	3.89	
	14,991	20,131	23,187	29,145	35,151	41,198	47,280	53,393	59,530		2.0	0.75	
	17,283	23,187	29,145	35,151	41,198	47,280	53,393	59,530	65,688		3.0*	1.54	
	18,644	25,018	31,425	37,877	44,366	50,888	57,439	64,013	70,608	1,110	4.0	2.56	0.659
	19,586	26,238	32,938	39,679	46,455	53,262	60,095	66,950	73,825	.,	5.0	3.80	
	20,245	27,108	34,015	40,960	47,937	54,942	61,972	69,022	76,090		6.0	5.24	
	14,588	19,588	24,639	29,736	34,870	40,039	45,235	50,455	55,693		2.0	0.75	
						,		57,522			3.0*	1.54	
	16,717	22,423	28,181 30,272	33,983	39,823	45,696	51,598	1	63,468	1,030	4.0	2.56	0.58
	17,986	24,105	,	36,481	42,725	48,999	55,299	61,622	67,965	1,050			0.50
	18,827	25,217	31,651	38,122	44,626	51,158	57,714	64,291	70,885		5.0	3.80	
AHW 2-30/36-4N	19,426	26,007	32,628	39,283	45,969	52,680	59,413	66,165	72,933		6.0	5.24	
LL	14,145	18,989	23,883	28,818	33,792	38,796	43,826	48,880	53,950		2.0	0.75	
1/2HP, 12x8T,	16,103	21,595	27,135	32,716	38,333	43,979	49,652	55,348	61,062		3.0*	1.54	
20″ FH x 10″ FL,	17,257	23,123	29,033	34,981	40,962	46,971	53,003	59,056	65,127	950	4.0	2.56	0.50
4 Row,	18,016	24,126	30,275	36,459	42,673	48,912	55,173	61,452	67,748		5.0	3.80	
5 Circuit, 10 FPI	18,554	24,835	31,152	37,500	43,875	50,274	56,693	63,129	69,579		6.0	5.24	
	13,688	18,371	23,101	27,871	32,676	37,511	42,371	47,251	52,149		2.0	0.75	
	15,479	20,753	26,071	31,427	36,816	42,234	47,675	53,137	58,615		3.0*	1.54	
	16,521	22,132	27,783	33,469	39,185	44,926	50,689	56,471	62,268	875	4.0	2.56	0.44
	17,202	23,031	28,896	34,792	40,715	46,661	52,627	58,610	64,607		5.0	3.80	
	17,683	23,664	29,678	35,719	41,786	47,873	53,979	60,100	66,234		6.0	5.24	
	13,145	17,640	22,176	26,751	31,357	35,991	40,649	45,325	50,018		2.0	0.75	
	14,751	19,771	24,833	29,928	35,053	40,204	45,376	50,567	55,774		3.0*	1.54	
	15,672	20,990	26,343	31,728	37,139	42,572	48,026	53,496	58,980	795	4.0	2.56	0.37
	16,270	21,778	27,317	32,884	38,475	44,087	49,716	55,361	61,018		5.0	3.80	
				33,691			· · · · · · · · · · · · · · · · · · ·	56,652					-

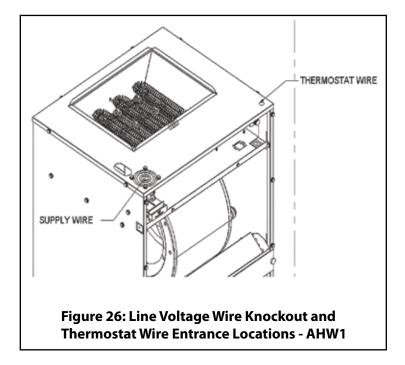
Table 7: AHW2-30, 36-3N and AHW2-30, 36-4N Hot Water Heating Capacities

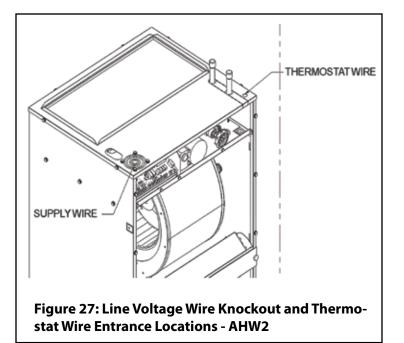
SECTION 6: LINE VOLTAGE WIRING

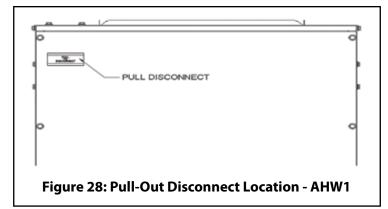
Power Supply Wiring

The air handler internal wiring is complete except for the power supply and the thermostat wires. See wiring diagram and/or Tables 8, 9, and 11 for wire size, fuse/circuit breaker size, and ground wire sizes. The use of a cable connector (strain relief) on incoming power supply wires to relieve any strain on wiring is required. Follow the steps below to connect the power supply wires.

- 1. Remove the blower/control box access panel.
- 2. Remove the appropriate size knockout in the electrical entrance located on the left side of the air handler top.
- 3. Install a cable connector (strain relief) in the electrical entrance hole.
- 4. Strip $\frac{1}{2}$ " of the insulation from the end of each wire.
- 5. Insert the supply voltage wires through the cable connector.
- 6. Insert the black wire into the L1 screw terminal on the circuit breaker, pull-out disconnect, or terminal block from the top and tighten the set screw to clamp down on the wire. For models with line voltage pigtails, connect the black wire to the black pigtail wire and tighten the wire nut.
- 7. Insert the white or red wire into the L2 screw terminal on the circuit breaker, pull-out disconnect, or terminal block
- 8. from the top and tighten the set screw to clamp down on the wire. For models with line voltage pigtails, connect the white or red wire to the red pigtail wire and tighten the wire nut.
- 9. Insert the green wire into the ground lug and tighten the set screw.


NOTE: This air handler may be equipped with a pull-out disconnect device. The pull-out disconnect device provides a means of disconnecting the power to the air handler. The pull-out disconnect device is not meant to protect the wiring in the air handler and between the air handler and the main electrical panel (breaker box). To protect the electrical supply wiring and the wiring inside of the air handler in the event of a short circuit, a circuit breaker in the main electric panel (breaker box) is required. Electrical data for the air handler is shown in Tables 8-11. If sheathed cable is used, refer to NEC National Electrical Code (NFPA 70) or the Canadian Electrical Code,


Part I (CSA C22.1) and local codes for additional requirements concerning supply circuit wiring.


IMPORTANT - All installation on field wiring must be rated at 60°C or higher. Please refer to the wiring diagrams on the air handler or the tables this manual for more information.

WARNING

This air handler is not equipped with a shield that covers the line voltage electrical supply wires the terminal block connections or the circuit breaker connections. For personal safety, turn the electrical power "OFF" at the main electrical panel (breaker box) and at the air handler control box the pull-out disconnect device before attempting any service or maintenance operations. Homeowners should never attempt to perform any maintenance which requires opening the air handler control box cover.

		AIR HANDLER MODELS	
	AHW1	AHW1	AHW1
Indoor Blower Type	Constant Torque	AHW1 Constant Torque	AHW1 Constant Torque
Indoor Blower Motor Code	LM	LG	LI
Indoor Blower HP	1/3	1/3	1/2
Indoor Blower Size	10 x 7T	10 x 7T	10 x 8T
Indoor Blower Amps - 208/240 VAC	0.77 / 0.74	1.66 / 1.58	2.52 / 2.40
Min. Wire Size (90°C)	#14	#14	#14
Minimum Wire Size (75°C)	#14	#14	#14
Minimum Wire Size (60°C)	#14	#14	#14
Ground Wire Size	#14	#14	#14
Max Fuse Amps	15	15	15

Table 8: Wiring Requirements – 208/240 VAC No Electric Heat

+ Refer to the National Electrical Code Table 250-95 for Non-Sheathed Conductor Ground Wire.

* Ground conductor must be the same size and temperature rating as the other conductors listed in Table 8.

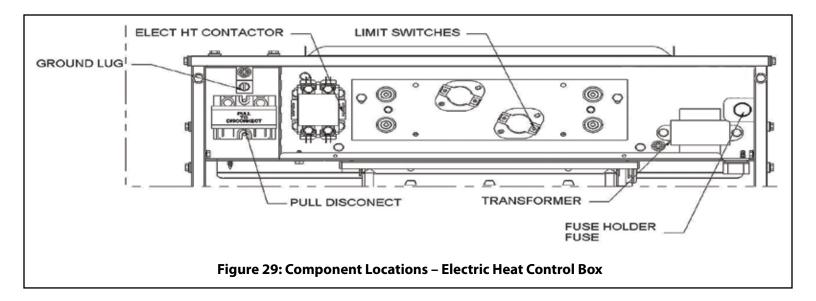
	AIR HANDLER MODELS												
		AH	W1		AHW1				AHW1				
3 kW Heater Amps - 208/240 VAC	10.8/12.5			10.8/12.5			10.8/12.5						
5 kW Heater Amps - 208/240 VAC		18.0/	20.8			18.0	/20.8			1	8.0/20.8	3	
6 kW Heater Amps - 208/240 VAC		21.6/	25.0			21.6	/25.0			2	1.6/25.0)	
8 kW Heater Amps - 208/240 VAC		28.8/	33.3			28.8	/33.3			2	8.8/33.3	3	
10 kW Heater Amps - 208/240 VAC		36.1/	41.7			36.1,	/41.7			3	6.1/41.2	7	
Indoor Blower Type	Constant Torque			C	Constan	t Torqu	e	Constant Torque					
Indoor Blower Size	10 x 7T			10 x 7T			10 x 8T						
Indoor Blower HP		1/	3		1/3			1/2					
Indoor Blower Amps - 240 VAC		0.7	74		1.58			2.40					
Indoor Blower Amps - 208 VAC		0.7	77		1.66			2.52					
Indoor Blower Code		LI	Ν			L	G			LI			
Heater - kW	3	5	6	8	3	5	6	8	3	5	6	8	10
Minimum Circuit Ampacity	16.5	27.0	32.2	42.6	17.6	28.0	33.2	43.6	18.6	29.0	34.3	44.7	55.1
Minimum Copper Wire Size (90°C)	#14	#12	#10	#8	#14	#12	#10	#8	#14	#12	#10	#8	#6
Minimum Copper Wire Size (75°C)	#14	#10	#10	#8	#14	#10	#10	#8	#14	#10	#10	#8	#6
Minimum Copper Wire Size (60°C)	#14	#10	#8	#6	#14	#10	#8	#6	#14	#10	#8	#6	#4
Ground Wire Size	*	*	*	*	*	*	*	*	*	*	*	*	*
Maximum Overcurrent Protection Amps	20	30	35	45	20	30	35	45	20	30	35	45	60

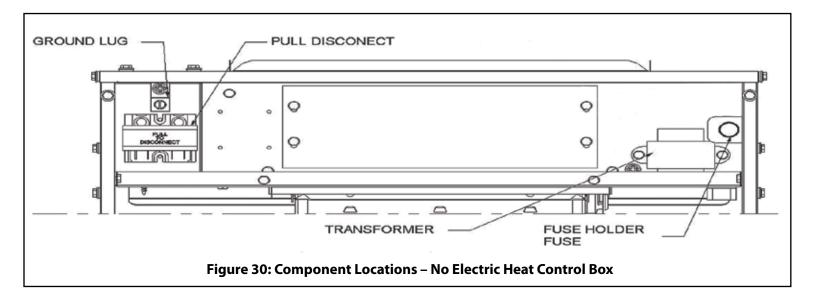
Table 9: Wiring Requirements – 208/240 VAC Electric Heat - Single Branch Circuit

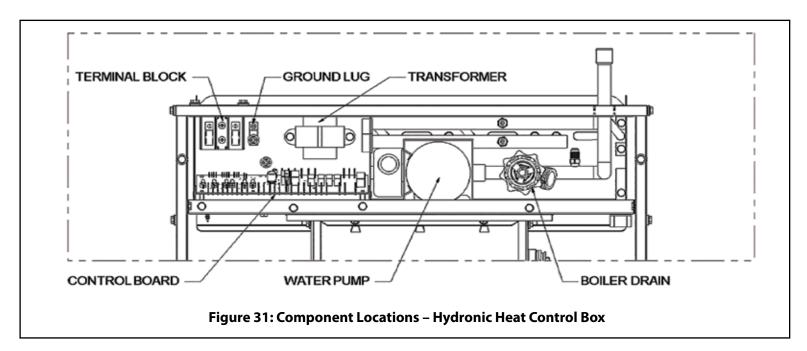
+ Refer to the National Electrical Code Table 250-95 for Non-Sheathed Conductor Ground Wire.

* Ground conductor must be the same size and temperature rating as the other conductors listed in Table 9.

		3 kW	4 kW	5 kW	6 kW	7 kW	8 kW	9 kW	10 kW
	BRANCH								
	CIRCUIT	1	1	1	1	1	1	1	1
240 VAC, 60 HZ, 1 PH	BTU	10,236	13,649	17,061	20,473	23,885	27,297	30,709	34,121
	kW	3	4	5	6 7 8 9	9	10		
230 VAC, 60 HZ, 1 PH	BTU	9,554	12,727	15,901	19,074	22,247	25,420	28,628	31,801
,,,,	kW	2.8	3.73	4.66	5.59	6.52	7.45	8.39	9.32
220 VAC, 60 HZ, 1 PH	BTU	8,872	11,806	14,775	17,709	20,678	23,612	26,581	29,515
	kW	2.6	3.46	4.33	5.19	6.06	6.92	7.79	8.65


Table 10: Electric Heater Element Capacities


	AIR HANDL	ER MODELS
	AHW2	AHW2
Indoor Blower Type	Constant Torque	Constant Torque
Indoor Blower Motor Code	LK	LL
Indoor Blower HP	1/2	1/2
Indoor Blower Size	10 x 8T	12 x 8T
Indoor Blower Amps	1.91	2.70
Water Pump Amps	0.52	0.52
Minimum Circuit Ampacity	3.04	4.03
Minimum Copper Wire Size (90°C)	#14	#14
Minimum Copper Wire Size (75°C)	#14	#14
Minimum Copper Wire Size (60°C)	#14	#14
Ground Wire Size	#14	#14
Maximum Overcurrent Protection Amps	15	15


Table 11: Wiring Requirements – 115 VAC Hydronic Heat

+ Refer to the National Electrical Code Table 250-95 for Non-Sheathed Conductor Ground Wire.

* Ground conductor must be the same size and temperature rating as the other conductors listed in Table 11.

Thermostat Wiring

Thermostat wires enter the air handler through a ½" diameter hole located on the right front corner of air handler top. A cable connector (strain relief) must be installed to hold wiring in place and to relieve any strain on the wiring. The thermostat wiring must be no smaller than 22 gauge. Refer to Table 12 for recommended wire gauge, lengths and maximum current for each wire gauge.

Max. Thermostat	Thermostat Wire	Thermostat Wire
Wire Length	Gauge	Maximum Current
0 - 100 Feet	22	3.0 Amps
0 - 125 Feet	20	3.0 amps
0 - 250 Feet	18	3.0 amps

Table 12: Low Voltage Wire Gauge and Max Lengths

The use of a five-conductor cable from the thermostat to the air handler is recommended for typical heating or heating/cooling applications with a two or three-conductor cable from the air handler to the outdoor unit. A seven-conductor cable from the thermostat to the air handler is recommended for a typical heat pump installation with a five-conductor cable from the air handler to the outdoor unit. Typical thermostat wire colors and heating/ cooling connections are listed in Tables 13 - 15.

Thermostat Installation

The thermostat should be located on an inside wall in an open area to more closely regulate average room air, preferably where there is air movement back to air handler. Locating height of thermostat is important. If possible, the thermostat should be located in a hallway upstream from the air handler return airflow, not within 3 feet of from any windows and 52 to 66 inches above the floor. **DO NOT** place the thermostat within three feet of any of the air-distribution supply air registers.

Maintenance, operating and/ or programming instructions are in the envelope accompanying the thermostat. Give the envelope to the homeowner.

Air Handler and Outdoor Unit With Separate Transformers

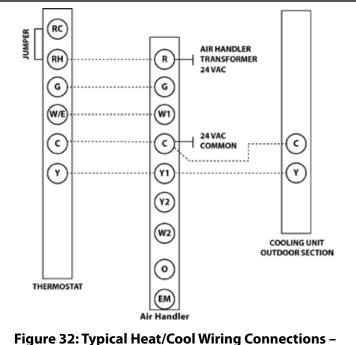
If the air-hander and the outdoor unit have separate transformers, it is important to use a thermostat with isolated heating and cooling contacts "RC" and "RH" to prevent interconnection of Class II 24 Volt Systems. Most modern thermostats have separate heating and cooling contacts for use with homes that have an air handler and outdoor unit that are completely separate and each have a 24 VAC transformer for system control. These thermostats have a "RC" terminal for cooling and a "RH" terminal for heating. Connect the outdoor unit RED wire from the "R" terminal on the outdoor unit to the "RC" terminal on the thermostat and the RED air handler pigtail wire to the "RH" terminal on the thermostat. If the air handler and outdoor unit using separate transformers are both connected to the thermostat "R" terminal, a transformer burnout can occur or either the air handler or outdoor unit control system could go into lockout mode. If an air handler and outdoor unit with separate transformers are being installed and the thermostat does not have the "RC" and "RH" terminals, a new thermostat with "RC" and "RH" terminals must be purchased and installed.

IMPORTANT: Cycle the air handler and outdoor unit separately to make sure both operate correctly.

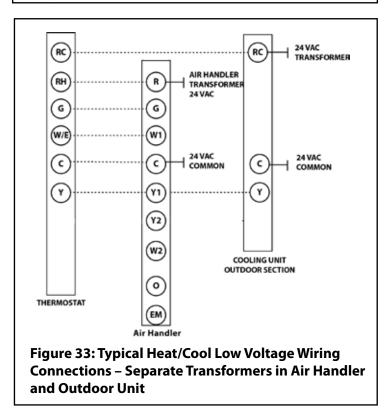
Thermostat Heat Anticipator

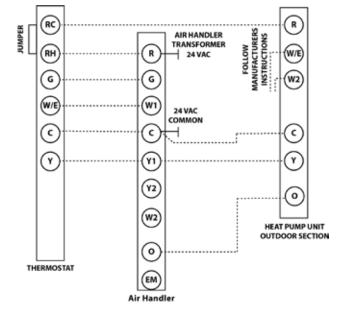
Some thermostats have a heat anticipator setting that must be set to the settings shown below in order to function correctly. If the heat anticipator setting is too low, the system will short cycle. If the heat anticipator setting is too high, the system will run long heat cycles thus causing the temperature to overrun the temperature setting. This will cause the homeowner or user to feel too warm by the time the blower completes its cycle and too cold by the time the system cycles on again. The heat anticipator should be set to 0.4 for all heating kW's.

The thermostat may be a "self-setting" type in which no heat anticipator will be found on the thermostat, eliminating the need for field adjustment.

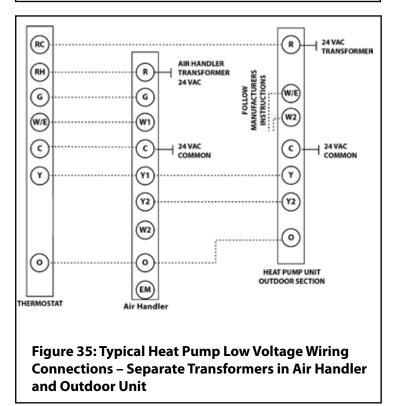

When using separate thermostats, a thermostat interlock system must be provided to prevent simultaneous operation of the heating and cooling modes. Simultaneous operation can result in equipment overheating, equipment damage, and wasted energy.

Do Not connect the YELLOW wire to the thermostat unless an outdoor unit is installed.




Do not locate thermostat within three feet of any of the following items:

- 1. Supply air registers
- 2. Lights or heat lamps
- 3. Aquariums
- 4. Televisions, stereo, amplifiers, surround sound systems
- 5. Stoves or any cooking appliance
- 6. Refrigerator
- 7. Washer and/or dryer
- 8. Hot water tank
- 9. Sink or near any hot water
- 10. Within 15 feet of any electric space heater
- 11. Within two feet of any sunlight



Single Transformer

Figure 34: Typical Heat Pump Low Voltage Wiring Connections – Single Transformer

Wire Color	Description	Letter Code	Thermostat Connection
RED	24 VAC	RED / R	R
WHITE	Heat (1stStage Heat)	WHT / W	W or W1
GREEN	Indoor Fan	GRN / G	G
YELLOW	24 VAC Common (Electric Heat Models)	YEL / C	С
BROWN	24 VAC Common (Hydronic Heat Models)	BRN / C	С

Table 13: Air Handler Low Voltage Pigtail Wire Colors and Thermostat Connections

Wire Color	Description	Letter Code	Thermostat Connection
RED	24 VAC	RED / R	R
WHITE	Heat (1stStage Heat)	WHT / W	W or W1
GREEN	Indoor Fan	GRN / G	G
YELLOW	Cooling	YEL / Y	Y or Y1
BROWN	24 VAC Common	BRN / C	С

Table 14: Typical Heat / Cool Thermostat Wire Color Codes and Connections

Wire Color	Description	Letter Code	Thermostat Connection
RED	24 VAC	RED / R	R
WHITE	Heat (1stStage Heat)	WHT / W	E
GREEN	Indoor Fan	GRN / G	G
YELLOW	Cooling	YEL / Y	Y or Y1
BROWN	24 VAC Common	BRN / C	С
ORANGE	Heat Pump Reversing Valve Solenoid (Most Brands)	ORN / O	0
BLUE	Heat Pump Reversing Valve Solenoid (Some Brands)	BLU / B	В

Table 15: Typical Heat Pump Thermostat Wire Color Codes and Connections

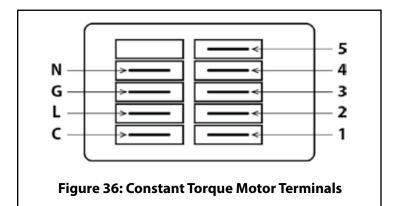
Typical Heating/Cooling Thermostat Wiring Connections (check wire colors)

- 1. Remove blower / control box access panel.
- 2. Insert the wire cables from the thermostat and outdoor unit and into the control box through the ½" diameter hole located on the right side of the air handler top panel. Place the thermostat wire cable next to the air handler low voltage terminal block (LVTB) or low voltage pigtails. Secure the thermostat and outdoor unit wire cables with a strain relief in the ½" diameter hole to prevent wire connections from being pulled apart.
- 3. Strip 1/2" of the insulation on the end of each wire.
- 4. Connect the RED (24 VAC) wire from the thermostat "R" terminal to the "R" terminal on the LVTB or to the RED air handler low voltage pigtail wire with a wire nut.
- 5. Connect the WHITE (heat) wire from the thermostat "W" terminal to the "W" terminal on the LVTB or to the WHITE air handler low voltage pigtail wire with a wire nut.
- 6. Connect the GREEN (indoor fan) wire from the thermostat "G" terminal to the "G" terminal on the LVTB or to the GREEN air handler low voltage pigtail wire with a wire nut.
- 7. Connect the YELLOW (cool) wire from the thermostat "Y" terminal with the "Y" terminal on the LVTB or to the YELLOW air handler low voltage pigtail and wire from the outdoor unit compressor contactor coil (typically YELLOW) with a wire nut. For models with a LVTB, also connect the wire from the compressor contactor coil on the outdoor unit to the "Y" terminal on the LVTB.
- 8. Connect the 24 VAC common wire (typically BROWN) from the thermostat "C" terminal to the "C" terminal on the LVTB or to the BROWN or BLUE 24 VAC common air handler low voltage pigtail wire and the 24 VAC common wire (typically BROWN) from the outdoor unit compressor contactor coil with a wire nut. For models with a LVTB, also connect the 24VAC common wire from the outdoor unit compressor contactor coil common to the "C" terminal on the LVTB.

Typical Heat Pump - Heating/Cooling Thermostat Wiring Connections

- 1. Remove blower / control box access panel.
- 2. Insert the wire cables from the thermostat and outdoor unit and into the control box through the ½" diameter hole located on the right side of the air handler top panel. Place the thermostat wire cable next to the air handler low voltage terminal block (LVTB) or low voltage pigtails. Secure the thermostat and outdoor unit wire cables with a strain relief in the ½" diameter hole to prevent wire connections from being pulled apart.
- 3. Strip 1/2" of the insulation on the end of each wire.
- 4. Connect the RED (24 VAC) wire from the thermostat "R" terminal to the "R" terminal on the LVTB or to the RED air handler low voltage pigtail wire with a wire nut.
- 5. Connect the WHITE (emergency heat) wire from the thermostat "E" terminal to the "W" terminal on the air handler LVTB or to the WHITE air handler low voltage pigtail wire with a wire nut. If applicable, also connect the wire from the outdoor control board that calls for supplemental heat during the defrost cycle to the "W" terminal on the air handler LVTB or to the WHITE air handler pigtail wire. Refer to the outdoor unit installation instructions for additional information on supplemental heat during the defrost cycle.
- 6. Connect the GREEN (indoor fan) wire from the thermostat "G" terminal to the "G" terminal on the LVTB or to the GREEN air handler low voltage pigtail wire with a wire nut.
- 7. Connect the YELLOW wire from the thermostat "Y" terminal to the "Y" terminal on the LVTB or to the YELLOW air handler low voltage pigtail and wire from the outdoor unit compressor contactor coil (typically YELLOW) with a wire nut. For models with a LVTB, also connect the wire from the compressor contactor coil on the outdoor unit to the "Y" terminal on the LVTB.
- 8. Connect the 24 VAC common wire (typically BROWN) from the thermostat "C" terminal to the "C" terminal on the LVTB or to the BROWN or BLUE 24 VAC common air handler low voltage

pigtail wire and the 24 VAC common wire (typically BROWN) from the outdoor unit compressor contactor coil with a wire nut. For models with a LVTB, also connect the 24VAC common wire from the outdoor unit compressor contactor coil common to the "C" terminal on the LVTB.


9. Connect the ORANGE or BLUE (reversing valve solenoid) wire from the thermostat "O" or "B" terminal with the ORANGE or BLUE wire from the "O" or "B" terminal on the outdoor unit with a wire nut. Refer to the outdoor unit installation instructions to determine if "O" or "B" is correct for the application.

SECTION 8: BLOWER MOTOR SPEED SELECTION

M WARNING

To avoid personal injury or property damage, make certain that the motor leads cannot come into contact with noninsulated metal components of the air handler.

The constant torque motor in this air handler operates on either 208/240 VAC (electric heat and no heat models) or 115 VAC (hydronic heat models) and the motor speed taps are controlled by 24 VAC. The speed taps can be changed by moving the wires connected to terminals 1 – 5 on the motor terminal block (See Figure 38). Tables 16 and 17 show the constant torque motor lead connection labeling and the connection definitions.

TERMINAL	CONNECTION
C	Speed Tap Common - 24 VAC Common
L	Supply Voltage – 208/240 VAC – Line 1
G	Ground Connection
N	Supply Voltage – 208/240 VAC – Line 2
1	Low Speed Tap - 24 VAC Input
2	Medium - Low Speed Tap - 24 VAC Input
3	Medium Speed Tap - 24 VAC Input
4	Medium - High Speed Tap - 24 VAC Input
5	High Speed Tap - 24 VAC Input

Table 16: Constant Torque Motor Terminal Connections – Electric Heat and No Heat Models

TERMINAL	CONNECTION
C	Speed Tap Common - 24 VAC Common
L	Supply Voltage - 115 VAC
G	Ground Connection
Ν	Supply Voltage - Neutral
1	Low Speed Tap - 24 VAC Input
2	Medium - Low Speed Tap - 24 VAC Input
3	Medium Speed Tap - 24 VAC Input
4	Medium - High Speed Tap - 24 VAC Input
5	High Speed Tap - 24 VAC Input

Table 17: Constant Torque Motor Terminal Connections – Hydronic Heat Models

Changing Motor Speeds

- 1. Turn off all electrical supply circuits to the air handler at the main electrical panel.
- 2. Switch the air handler circuit breaker(s) to "OFF".
- 3. Remove the blower access panel.
- Move the wires connected to terminals 1-5 on the motor terminal block (See Figure 38) to the desired speed taps. See Tables 16 and 17 for the speed tap descriptions and Figures 39 – 42 for air handler wiring diagrams. Speed tap wire colors are as follows.
 - a. Electric Heat Models
 - Cooling: BLACK
 - Heating: WHITE
 - Continuous Fan: Red
 - b. Hydronic Heat Models
 - Cooling: BLACK
 - Heating: RED
 - Continuous Fan: BLUE

5. Reinstall the blower access panel.

6. Turn the air handler circuit breakers to "ON".

Turn on all electrical supply circuits to the air handler at the main electrical panel.

7. Set the thermostat to the desired operating mode and temperature.

SECTION 9: FINAL SYSTEM CHECKOUT AND START-UP

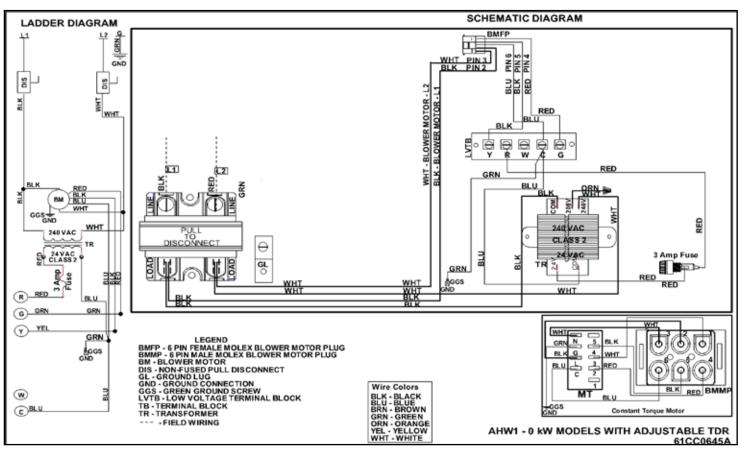
- 1. Refer to appropriate wiring diagram and recheck all wiring connections. Ensure that all wiring connections are secure.
- 2. Check blower motor connectors to make sure they are not damaged or loose.
- 3. If the blower/control box cover was removed, reinstall it.
- 4. Switch the air handler circuit breakers in the main electrical panel (breaker box) to the ON position.
- 5. Insert the **Pull-Out Disconnect** handle into the body of the disconnect (electric heat and no heat models) or switch the air handler service disconnect switch to the ON position (hydronic heat models).
- 6. Set the thermostat FAN Switch to the ON position to enable the continuous fan mode.
- 7. Check for air leaks at all duct connections and seal any leaks that are found.
- 8. Set the thermostat FAN switch to the AUTO position.
- 9. Set the thermostat HEAT/COOL switch to the COOL position

and adjust the set point below the room temperature to enable the cooling mode.

- 10. Check for proper cooling operation per the outdoor unit installation and operating instructions.
- 11. **No Heat Models Only:** Set the thermostat to the desired operating mode and adjust the temperature setting for comfort conditions.
- 12. **Electric Heat Models Only:** Switch the thermostat HEAT COOL switch to the HEAT position and adjust the set point above the room temperature to enable the heating mode. a. Check for proper heating operation.
 - b. Set the thermostat to the desired operating mode and adjust the temperature setting for comfort conditions.
- 13. **Hydronic Heat Models Only:** Switch the thermostat HEAT COOL switch to the OFF position. The heating mode in models with hydronic heating system should not be switched on until system is filled and air is purged from hot water coil using the following procedure.

Filling Hydronic Heating System With Water, Purging Air From System, and System Startup

- 1. Fill and pressurize the water heater and water coil.
- 2. Check for water leaks and seal any leaks that are found.
- 3. Turn the water heater on and set water temperature at 130°F for now.
- 4. Vent air from the water tank by opening a hot water spigot or faucet.
- 5. Vent and flush the supply and return water lines by attaching a hose to the volume purge valve and running purge water to a safe location. Run approximately 5 gallons of water at a high flow rate to purge.
- 6. Switch the air handler power disconnect switch to the "ON" position.
- 7. Switch the air handler circuit breakers in the main electrical panel to the ON position.
- 8. Set the thermostat HEAT/COOL switch to the HEAT position and adjust the set point above the room temperature to call for heat. The fan and pump should start simultaneously. The water coil should be warm after a few minutes of operation.
- 9. The air handler is rated for water temperatures of 130°-180°F. Set water heater temperature at design temperature and take proper safeguards for water usage at supply points per local codes and safety considerations. NOTE: If CPVC or PEX hot water tubing is used, do not set the


water temperature above 150°F.

10. Set thermostat HEAT/COOL switch to the desired operating mode and adjust the temperature setting for comfort conditions.

				SE	CTION 10: I	BLOWE	R PER	FORM	ANCE											
Cabinet Size	Blower	Motor	Blower	Motor	Evap.	Motor			CFM @	External	Pressure	In-WC (Watts/100	00cfm)						
	Housing	HP	Code	Volts	CoilFHxFL	Тар	0.	10	0.	20	0.30		0.40		0.50					
						5	957	{198}	899	{213}	842	{231}	781	{266}	722	{293}				
							[185]		[192]	(215)	[195]	(231)	[208]	(200)	[212]	(2))				
						4	898 [158]	{176}	839 [165]	{196}	778 [176]	{226}	765 [181]	{236}	717 [186]	{259}				
22″Wx18 ¾″ Dx36″H					18.194x17.75		779		734		680		618		545					
(Electric Heat)	10x7T	1/3	LM	240	(4R, .827x.625, 5/16")	3	[114]	{146}	[120]	{163}	[126]	{185}	[131]	{211}	[136]	{249}				
						2	713	{129}	663	{150}	600	{173}	523	{208}	484	{235}				
							[92] 585		[100] 545		[104] 460		[109] 385		[114] 308					
						1	[61]	{104}	[67]	{123}	[72]	{156}	[75]	{194}	[79]	{263}				
						5	1248	{275}	1218	{286}	1213	{292}	1183	{300}	1129	{299}				
						5	[343]	[273]	[348]	[200]	[354]	[292]	[355]	[300]	[338]	[299]				
22″Wx18 ¾″Dx36″H (Electric Heat) 10x7T 1/3						4	1079 [221]	{205}	1062 [223]	{210}	1045 [234]	{224}	1003 [239]	{238}	966 [251]	{260}				
					18.194x17.75		1007		993		969		930		878					
	10x7T	1/3	LG	240	(4R, .827x.625, 5/16")	3	[177]	{176}	[186]	{187}	[190]	{196}	[200]	{215}	[208]	{237}				
					2	878	{137}	851	{146}	811	{165}	757	{184}	706	{213}					
							[120] 825		[124] 784		[134] 748		[139] 689		[150] 640					
				1	[103]	{125}	[110]	{140}	[117]	{157}	[123]	{178}	[132]	{206}						
				240	21.50x17.75 (4R, .827x.625, 5/16")		_	1396	(200)	1340	(207)	1288	(207)	1288	(200)	1206	(200)			
						5	[419]	{300}	[398]	- {297}	[383]	{297}	[387]	{300}	[360]	{298}				
						4	1340	{276}	1307	{282}	1288	{288}	1254	{291}	1177	{294}				
22″ Wx18 ¾″ Dx36″H							[370] 1250		[369] 1219		[371] 1204		[365] 1181		[346] 1112					
(Electric Heat)	10x8T	1/2	LI			3	[307]	{246}	[315]	{258}	[314]	{261}	[322]	{273}	[323]	{291}				
								2	1086	{195}	1065	{200}	1034	{212}	978	{235}	930	{260}		
						-		[212] 1025		[213] 1002		[219] 974		[230] 909		[242] 846				
						1	[180]	{176}	[182]	{182}	[192]	{197}	[205]	{225}	[210]	{248}				
						5	947 {267}	(267)	888	{292}	860	{310}	787	{351}	724	{387}				
						5	[253]	[207]	[259]	[292]	[267]		[276]	[121]	[280]	[307]				
				120		4	911 [223]	{245}	859 [230]	{268}	802 [236]	{294}	732	{329}	656 [249]	{380}				
22″Wx18 ¾″ Dx36″H					21.50x17.75		21.50x17.75		820		763		690		609		535			
(Hydronic Heat)	10x8T	T 1/2	LK		(4R, .827x.625, 5/16")	3	[172]	{210}	[180]	{236}	[189]	{274}	[191]	{314}	[197]	{368}				
						2	733	{191}	661	{228}	588	{260}	564	{278}	502	{321}				
							[140] 613		[151] 542		[153] 471		[157] 400		[161] 327					
						1	[91]	{148}	[96]	{177}	[102]	{217}	[105]	{262}	[109]	{334}				
						5	1224	{303}	1169	{323}	1111	{345}	1050	{371}	985	{400}				
						5	[371]	[303]	[377]	[323]	[383]		[390]	[371]	[395]	(400)				
						4	[321]	{278}	1098 [323]	{294}	1036 [334]	{323}	973 [340]	{350}	903 [342]	{379}				
22″Wx18 ¾″ Dx36″H					21.50x17.75 (4R, .827x.625, 5/16″)	(4R, .827x.625,					1081		1015		951		886		812	
(Hydronic Heat)	12x8T	2x8T 1/2	LL	120			3	[272]	{252}	[280]	{276}	[283]	{298}	[289]	{326}	[293]	{361}			
						2	1026	{232}	956	{248}	887	{274}	812	{308}	730	{350}				
							[238] 950		[237] 876		[243] 801		[250] 717		[255] 627					
						1	[195]	{206}	[204]	{233}	[207]	{259}	[259]	{293}	[935]	{345}				

Table 18: Blower Performance – Without Air Filters

 $Minimum \ \mathsf{CFM} \ for \ \mathsf{Electric} \ \mathsf{Heat:} \ \ \mathsf{3kW} = \mathsf{195} \ \mathsf{CFM}; \ \mathsf{5kW} = \mathsf{325} \ \mathsf{CFM}; \ \mathsf{6kW} = \mathsf{390} \ \mathsf{CFM}; \ \mathsf{8kW} = \mathsf{520} \ \mathsf{CFM}; \ \mathsf{10kW} = \mathsf{650} \ \mathsf{CFM}; \ \mathsf{6kW} = \mathsf{195} \ \mathsf{CFM}; \ \mathsf{10kW} = \mathsf{195} \ \mathsf{10kW} = \mathsf{195} \ \mathsf{CFM}; \ \mathsf{10kW} = \mathsf{195} \ \mathsf{CFM}; \ \mathsf{10kW} = \mathsf{195} \ \mathsf{10kW} = \mathsf{195} \ \mathsf{CFM}; \ \mathsf{10kW} = \mathsf{195} \ \mathsf{10kW} = \mathsf{195}$

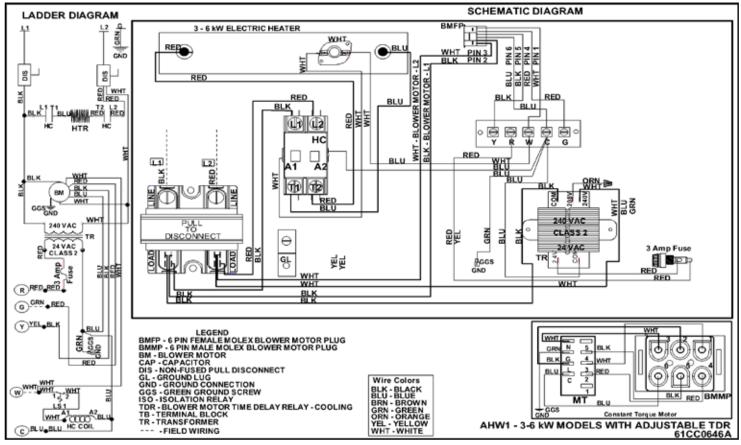


Figure 38: 3 kW, 5 kW and 6 kW Electric Heat Wiring Diagram

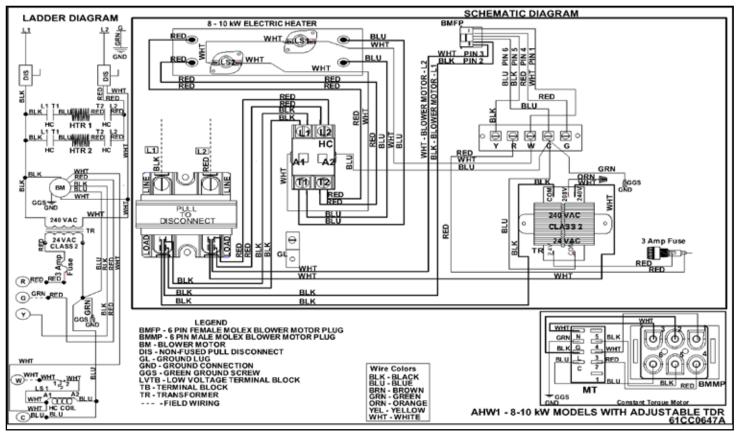


Figure 39: 8 kW and 10 kW Electric Heat Wiring Diagram

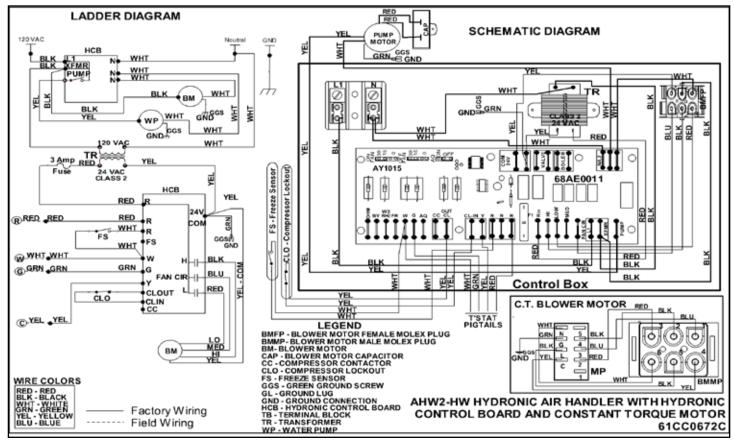


Figure 40: Hydronic Heat Wiring Diagram

Subject to change without notice Copyright by Mortex Products Inc. 2023 61BA0075D Supersedes: 61BA0075C