INSTALLATION MANUAL

Horizontal Fan Coil Models:

~ ·

HEU1 - DX Cooling w/ Electric Heat, Uncased

HEC1 - DX Cooling w/ Electric Heat, Cased

HEU3 - Chilled Water Cooling w/Electric Heat, Uncased-2P

HEC3 – Chilled Water Cooling w/Electric Heat, Cased-2P

HEU2 - DX Cooling w/ Hot Water Heat, Uncased

HEC2 – DX Cooling w/ Hot Water Heat, Cased

HEU4 – Chilled Water Cool w/Hot Water Heat, Uncased-4P

HEC4 – Chilled Water Cooling w/Hot Water Heat, Cased-4P

LIST OF SECTIONS

I – General	I
2 – Safety, General, Dimensional Data, Model # Nomenclature	2
3 - Location and Clearances	7
4 – Return and Supply Air Requirements	8
5 – Air Handler Installation	10
6 – Refrigerant Piping, TXV, Flowrator, Condensate Drain	
7 – Hot and Chilled Water	

8 – Line Voltage Wiring	21
9 - Thermostat Wiring and Connections	27
10 - Blower Motor Speed Selection and Motor Replacement	27
11 – Final System Checkout and Startup	28
12 - Blower Performance Tables	29
13 – Wiring Diagrams	33

LIST OF FIGURES

1 – HEU/HEC Dimensions – Front View	
2 – HEU Dimensions - Top View	5
3 – HEU Dimensions – Side View	5
4 – HEU/HEC Dimensions – Condensate, Power, T'stat Connections	
5 – HEC Dimensions – Rear View	6
6 – HEU/HEC Dimensions – Front View	6
7 – Clearance for Service Access	8
8 – Ceiling Access Panel	
9 – Supply and Return Duct Transitions	9
10 – Air Handler Mounting	10
11 – Evaporator Below Outdoor Unit Refrigerant Lines	
12 – TXV Sensing Bulb Location	11
13 – TXV Sensing Bulb Placement	12
14 – Typical TXV Connections	13
15 – Flowrator Distributor Assembly	
16 – Supplemental Heat Lockout (SHL) Temp Sensor Location	14
17 – Supplemental Heat Lockout (SHL) Temp Sensor Mounting	
18 – Supplemental Heat Lockout (SHL) Temp Switch Wiring	

19 – Typical Condensate Trap	
20 - Condensate Drain Connection Options	15
21 – Component and Water Components.	16
22 - Component Locations -Electric Heat Control Box	23
23 - Component Locations - No Heat Control Box.	23
24 - Component Locations - Hydronic Control Box	23
25 - Heat/Cool T'stat Connections - Separate T'stats/Single Tfmr	25
26 - Heat/Cool T'stat Connections-Separate T'stats/Separate Tfmrs	25
27 – Heat/Cool T'stat Connections - Single T'stat/Separate Tfmrs	25
28 - Heat/Cool T'stat Connections - Single T'stat/Single Tfmr	25
29 - Heat Pump T'stat Connections - Single T'stat/Single Tfmr	25
30 - Constant Torque Blower Assembly and Blower Deck	27
31 – Constant Torque Motor Control Module Terminals	27
32 – Wiring Diagram - HE*1/HE*3 - No Electric Heat	
33 – Wiring Diagram - HE*1/HE*3 - Electric Heat	
34 – Wiring Diagram - HE*2/HE*4 - No Hydronic Heat	
35 – Wiring Diagram - HE*2/HE*4 - Hydronic Heat With Pump	
36 – Wiring Diagram - HE*2/HE*4 - Hydronic Heat – No Pump	35

LIST OF TABLES

1 – HE*1/HE*3 General Specifications – Electric Heat4	15 – Wiring Requirements 208/240 VAC HE*1/HE*3**-*BC,CC,DC
2 – HE*2/HE*4 General Specifications – Hydronic Heat4	16 – Wiring Requirements 115 VAC HE*2/HE*4**-*AA,AB,AC,AD
3 – HEU Dimensional Data For Top View5	17 – Electric Heater Electrical Data
4 – HEC Dimensional Data For Top and Rear Views6	18 – Low Voltage Wire Gauge and Max Lengths
5 – HEC Rear Knockout Dimensions6	19 – Typical Thermostat Terminal Designations
6 – HEU/HEC Discharge Opening Dimensions6	20 – Air Handler Low Voltage Pigtail Wire Colors and Connections
7 – HEU/HEC Model Number Nomenclature7	21 – Typical Heat/Cool Thermostat Wire Colors and Connections
8 – Clearances to Combustibles7	22 – Typical Heat Pump Thermostat Wire Colors and Connections
9 – Optional Ceiling Access Panels9	23 - Constant Torque Motor Terminals - Electric Heat Models
10 – HE*2/HE*4 Hot Water Slab Coil Capacity	24 – Constant Torque Motor Terminals – Hydronic Heat Models
11 – HE*2/HE*4 Hot Water Slab Coil Capacity18	25 – HE*1/HE*3 Blower Performance – CFM
12– HE*2/HE*4 Hot Water Slab Coil Capacity	26 – HE*1/HE*3 Blr Performance – Motor Amps
13- HE*3/HE*4 A-Coil Chilled Water Performance Data	27 – HE*2/HE*4 Blower Performance – CFM
14 – Wiring Reguirements 208/240 VAC HE*1/HE*3**-*AC, BC	28 – HE*2/HE*4 Blr Performance – Motor Amps
	· · · · · · · · · · · · · · · · · · ·

CONTACT INFORMATION

Contact us by mail: Manufactured and Distributed by

Mortex Products Inc 501 Terminal Rd Fort Worth, TX 76106 www.mortx.com

SECTION 1: GENERAL

The following list includes important facts and information regarding this air handler.

- 1. This air handler is rated at 208/240 VAC (electric heat) or 115 VAC (hydronic heat), 60 Hertz, Single-Phase
- 2. This air handler is not designed to operate at 50 Hertz.
- 3. Air handler size varies by model.
- 4. This air handler is designed for both A/C and heat pump applications.
- 5. Use 4-wire thermostat cable for heating/cooling applications and 7-wire thermostat cable for heat pump applications.
- 6. This air handler is designed for horizontal applications only.
- 7. This air handler must not be operated without the access panels installed.

- 7. This air handler must not be operated without the access panels installed.
- 8. This air handler and its components listed are listed by ETL for the United States and Canada.
- 9. This air handler is for use at elevations of 10,000 ft (3,048m) or less.
- 10. This appliance is not to be used by persons (including children) with reduced physical, sensory or mental capabilities, or lack of experience and knowledge, unless they have been given supervision or instruction concerning use of this appliance by a person responsible for their safety.

SAVE THIS MANUAL FOR FUTURE REFERENCE

SECTION 2: SAFETY, GENERAL, DIMENSIONAL DATA, MODEL NUMBER NOMENCLATURE

This is a safety alert symbol. When you see this symbol on labels or in manuals, be alert to the potential for personal injury.

Understand and pay particular attention to the signal words **DANGER, WARNING, or CAUTION.**

DANGER: Indicates an imminently hazardous situation, which if not avoided, will result in death or serious injury. WARNING: Indicates a potentially hazardous situation, which if not avoided, could result in death or serious injury. CAUTION: Indicates a potentially hazardous situation, which if not avoided, may result in minor or moderate injury. It is also used to alert against unsafe practices and hazards involving property damage.

▲ WARNING

Improper installation may create a condition where the operation of the product could cause personal injury or property damage.

Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage. Refer to this manual for assistance; or for additional information consult a qualified contractor, installer, or service agency.

WARNING

FIRE OR ELECTRICAL HAZARD

Failure to follow the safety warnings exactly could result in serious injury, death, or property damage. A fire or electrical hazard may result causing property damage, personal injury or loss of life.

CAUTION

This product must be installed in strict compliance with the installation instructions and any applicable local, state, and national codes including, but not limited to; building, electrical, and mechanical codes.

IMPORTANT

The Clean Air Act of 1990 bans the intentional venting of refrigerant (CFC's and HFC's) as of July 1, 1992. Approved methods of reclaiming must be followed. Fines and/or incarceration may be levied for non-compliance.

Safety Requirements

This air handler must be installed in accordance with all national and local building/safety codes and requirements, local plumbing and waste water codes, and other applicable codes. In the absence of local codes, install in accordance with the following codes.

- Standard for the Installation of Air Conditioning and Ventilating Systems (NFPA 90A)
- Standard for the Installation of Warm Air heating and Air Conditioning Systems (NFPA 90B)
- National Electrical Code (NFPA 70)
- Canadian Electrical Code, Part I (CSA C22.2) or ANSI/NFPA No. 70
- All local codes (State, City, and Township) **NOTE:** All applicable codes take precedence over any recommendation made in these instructions. SunTherm assumes no responsibility for units installed in violation of any code or regulation.
- 1. Refer to the air handler rating plate for the air handler model number and refer to the dimensions page of this manual for return air plenum dimensions for the applicable model (see Figures 2 and 3 and Tables 9 and 10). The return air plenum must be installed according to the

above listed codes or the instructions in this manual.

- 2. Refer to the dimensions page of these instructions to determine the proper location to install the air handler.
- 3. This air handler is **not ETL listed** or approved for installation in a **manufactured (mobile) home.**
- 4. Provide clearances from combustible materials as listed in the **LOCATION AND CLEARANCES** section.
- 5. Provide clearances for service access panel to allow access to the control box, electric heater elements, hot water coil, and blower.
- 6. Power supply wiring and circuit breakers/fuses must be sized for the electrical characteristics listed on the air handler rating plate.
- 7. Failure to carefully read and follow all instructions in this manual can result in malfunction of the air handler, death, personal injury, and/or property damage.
- 8. Electric heat air handlers must be installed so the electrical components are protected from water.
- 9. Installing and servicing heating/cooling equipment can be hazardous due to electrical components.

- 10. Only trained and qualified personnel should install, repair, or service heating/cooling equipment. Untrained service personnel only perform basic maintenance functions such as cleaning of exterior surfaces and replacing the air filters.
- 11. Observe all precautions shown in the manuals and on labels attached to the air handler when servicing or conducting maintenance tasks.
- 12. These instructions cover minimum requirements and conform to existing national standards and safety codes. In some cases, these instructions exceed certain local codes and ordinances, especially

those who have not kept up with changing home practices. These instructions are to be followed and are the minimum requirement for a safe installation.

- 13. The capacity of the air handler should be based on an acceptable heat loss calculation for the structure such as ACCA Manual J or other approved methods.
- 14. 115 VAC models must be connected to a nominal 115 VAC, Single Phase, 60-Hertz power supply. **DO NOT CONNECT THIS APPLIANCE TO A 50 HZ POWER SUPPLY OR VOLTAGE ABOVE 132 VOLTS OR BELOW 98 VOLTS.**
- 15. 208/240 VAC models must be connected to a nominal 208 or 240 VAC, Single-Phase, 60-Hertz power supply. **DO NOT SUPPLY OR VOLTAGE ABOVE 253 VOLTS OR BELOW 187 VOLTS.**
- 16. Ground wire connections must be securely fastened to the ground lugs inside the control box.
- 17. Ductwork must be installed in accordance with the standards of the National Fire Protection Association (NFPA) Warm Air Heating and Ventilation Systems (NFPA Standards 90A and 90B). The air

distribution duct should be sized for 0.2 inches of static pressure. See

Air Conditioning Contractors of America (ACCA) Manual D for duct sizing.

- 18. The safety testing label appearing on this air handler covers the air handler and the factory installed coil only. It does not cover any other equipment.
- 19. Exterior surface of the cabinet may sweat when installed in a non conditioned space such as an attic or garage. Installer must provide protection for the building structure such as a full size auxiliary drain pan under all air handlers installed in the non-conditioned space. An auxiliary drain pan is needed to prevent building damage from condensation runoff from the unit casing.
- 20. Cabinet insulation used in this air handler is rated for R-2.1 (standard) and is 1/2" thick. Some jurisdictions require R-4.2 or R-6.0 on installations in a non-conditioned spaces. Add 1" thick insulation to the exterior casing of the air handler to comply in these jurisdictions and add a vapor barrier on the outside of the added insulation.

A WARNING

ALWAYS SHUT OFF ELECTRICITY AT THE DISCONNECT SWITCH OR TURN OFF THE CIRCUIT BREAKERS IN THE MAIN ELECTRICAL PANEL BEFORE PREFORMING ANY SERVICE ON THIS AIR HANDLER.

GENERAL INFORMATION

This air handler provides the flexibility for installation in any horizontal application and may be used with or without electric heat or hydronic heat. The 5-speed constant torque motor is capable of providing sufficient air flow for most applications. Return air may enter the bottom or end of a cased air handler.

Inspection

As soon as the air handler is received, it should be inspected for damage that may have occurred during transit. If shipping damage is found, the extent of the damage should be noted on the carrier's freight bill. A separate request for inspection by the carrier's agent should be made in writing. See the local wholesale distributor for more information. Mortex Products, Inc assumes no liability for freight damage.

Before installing the air handler, check the cabinet for screws or bolts which may have become loose during transit. Some air handler models have shipping supports for the blower motor shaft. Remove this support before operating the air handler unit.


Check the connecting of the wiring, electric heater, ducts or piping to make sure there is easy access to the air handler during the installation.

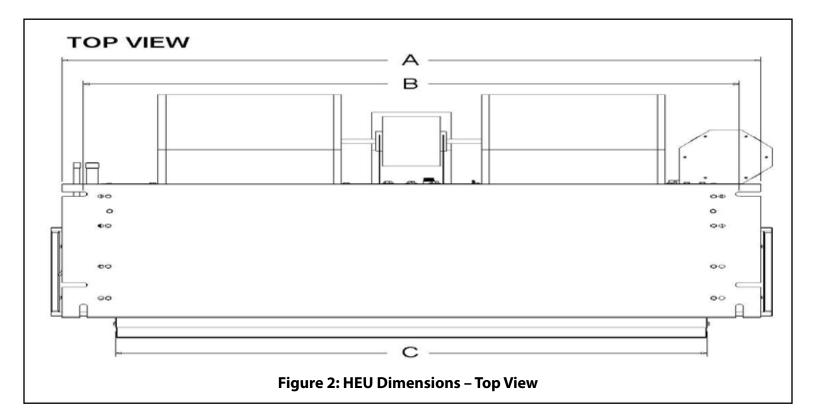
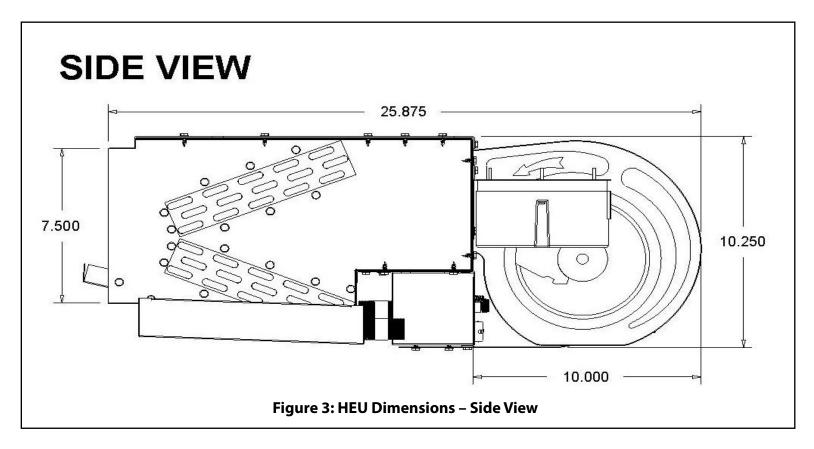
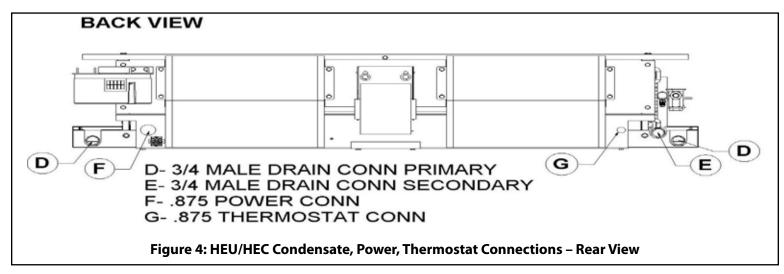
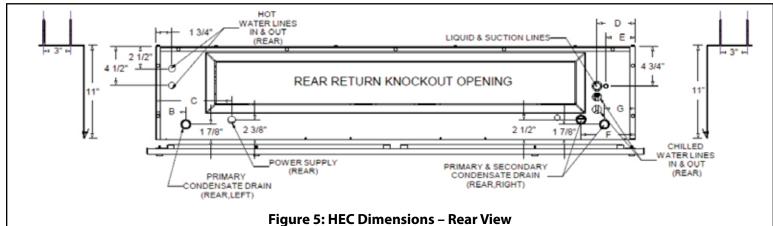

Model No.	Nominal	Motor	Unit Voltage	Blower	CFM Range @	Nominal
	Cooling Tons	HP	VAC	Code	0.2″ ESP	Heating kW
HE*1/HE*3-**-*-AC	1.5 - 2.0	0.33	208/240	J	482 - 851	00, 03, 05, 06, 08, 10
HE*1/HE*3-**-*-BC	1.5 - 2.5	0.33	208/240	К	480 - 851	00, 03, 05, 06, 08, 10
HE*1/HE*3-**-*-BC	1.5 - 2.5	0.50	208/240	М	837 - 1258	00, 03, 05, 06, 08, 10
HE*1/HE*3-**-*-CC	1.5 - 3.0	0.50	208/240	М	836 - 1267	00, 03, 05, 06, 08, 10
HE*1/HE*3-**-*-DC	1.5 - 3.0	0.50	208/240	М	922 - 1332	00, 03, 05, 06, 08, 10

Table 1: HE*1/HE*3 General Specifications – Electric Heat Models

Model No.	Nominal	Motor	Unit Voltage	Blower	CFM Range @
	Cooling Tons	HP	VAC	Code	0.2″ ESP
HE*2/HE*4-**-*-AC	1.5 - 2.0	0.33	115	N	485-857
HE*2/HE*4**-*-BC	1.5 - 2.5	0.33	115	0	486-854
HE*2/HE*4**-*-BC	1.5 - 2.5	0.50	115	R	834-1253
HE*2/HE*4-**-*-CC	1.5 - 3.0	0.50	115	R	845-1261
HE*2/HE*4-**-*-DC	1.5 - 3.0	0.50	115	R	837-1252

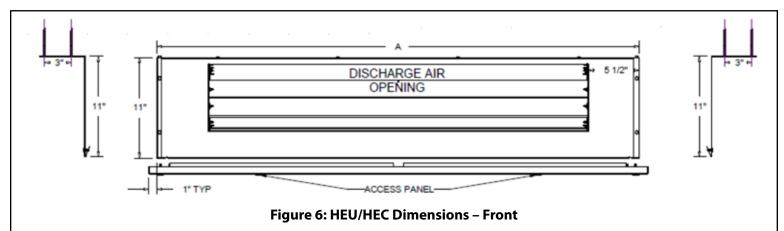

Table 2: HE*2/HE*4 General Specifications – Hydronic Heat Models





Model Nol	LIQUID LINE	SUCTION LINE	WATER LINE	А	В	С
HEUX-X-X-A	3/8″	3/4″	(2) 5/8"	37	34.25	30
HEUX-X-X-X-B	3/8″	3/4″	(2) 5/8″	45	42.25	38
HEUX-X-X-X-C	3/8″	3/4″	(2) 5/8"	49	46.25	42
HEUX-X-X-D	3/8″	3/4″	(2) 5/8"	56	53.25	49

Table 3: HEU Dimensional Data For Top View



Model	А	В	C	D	E	F	G
HEC***- *- AC	41″	3 1/8″	7 5/8″	4″	3″	5 7/8″	3 3/16″
HEC***- *- BC	47″	2 1/8″	6″	3″	2″	4 3/4″	2 1/8″
HEC***- *- CC	53 1/2″	3 3/ "	8 1/2″	4 1/4″	3 1/4″	6″	3 1/ "
HEC***- *- DC	60 1/2″	3 1/2″	12″	4 1/4″	3 1/4″	6″	3 1/2″

Model	Knocket Opening
HEC***- *- AC	30 7/8″ X 7 1/4″
HEC***- *- BC	38 3/8″ X 7 1/4″
HEC***- *- CC	42 3/8″ X 7 1/4″
HEC***- *- DC	[°] 49 3/8″ X 7 1/4″

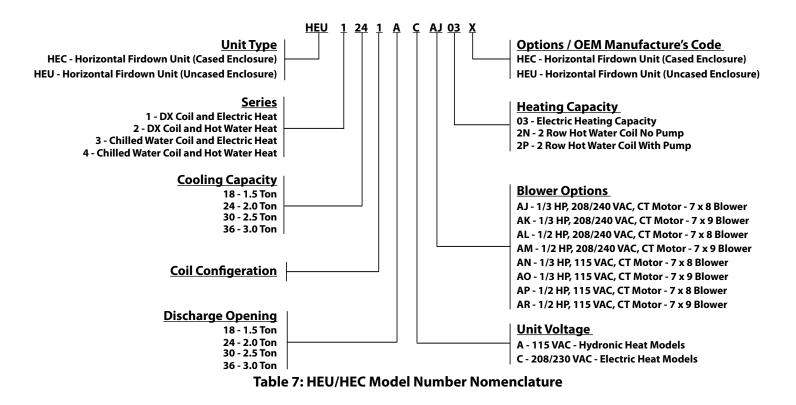

Table 4: HEC Dimensional Data For Top and Rear Views

Table 5: HEC Rear Return Knockout Dimensions

MODEL	DISCHARGE OPENI NG	MODEL	DISCHARGE OPENI NG
HE**- **- *- AC	30 1/4″ X 7 1/2″	HE**- **- *- CC	42 1/4″ X 7 1/2″
HE**- **- *- BC	38 1/4″ X 7 1/2″	HE**- **- *- DC	49 1/4″ X 7 1/2″

Table 6: HEC/HEU Discharge Opening Dimensions

SECTION 3: LOCATION AND CLEARANCES

Location

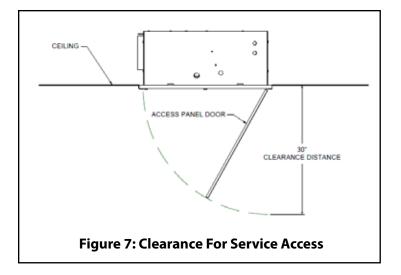
Access for servicing is an important factor when selecting the location of an air handler. Provide a minimum of 30 inches under the air handler for access to the control box, heating elements, water pump, blower, and air filters. The air handler can be serviced entirely from the bottom, including replacing the air filter on models equipped with a louvered ceiling access panel with an integrated filter rack.

NOTE: The air handler is designed for horizontal applications only and is therefore **<u>not</u>** designed to be installed in a closet or flush mounted in a wall in an upflow vertical position.

Location is usually predetermined. Check with the homeowner or general contractor for predetermined installation plans. If location has not been decided, consider the following in choosing a suitable location.

- 1. Select a location with adequate structural support, space for service access, and clearance for return and supply duct connections. The air handler is designed to fit in a 12" high drop down space
- 2. Normal operating sound levels may be objectionable if the air handler is placed directly over or under some rooms such as bedrooms, study, etc.
- 3. Locate the air handler where the supply and return air ducts can
- provide even air distribution to and from the living spaces.
- 4. Locate the air handler where the electrical supply wiring can be easily routed from main electrical panel to the air handler and where electrical wiring will not be damaged.
- Supply power wiring may be installed in a flexible conduit or armored cable. The installer must refer to National Electrical Code (NFPA 70), Canadian Electrical Code, Part I (CSA C22.2), ANSI/NFPA No. 70 and/or any local codes to ensure supply wiring complies with all applicable codes.
- 6. Locate appliance where thermostat wiring can be easily routed from the thermostat to the air handler and where the wiring will not be damaged. Make sure the wiring has enough length so it

will not to block access to any components that may need to be replaced or serviced.


- 7. Locate the air handler where refrigerant lines can be easily routed from the air handler to the outdoor unit.
- 8. Primary and secondary drain lines must be routed so air filter replacement is not obstructed.
- 9. The blow-thru design of this air handler will cause the exterior surface of cabinet to sweat when installed in a non-conditioned space such as an attic or garage. The installer must provide protection such as a full size auxiliary drain pan under any unit installed in a non-conditioned space to prevent damage to the building structure from condensation runoff.

Clearances

This air handler is approved for 0 inches of clearance to combustible material on any part of the air handler exterior casing and the inlet or outlet ducts (See Table 8). A clearance of 30 inches below the air handler is required for the service access panel to swing open (See Figure 7).

Top	Back	Sides	Supply Duct
(inches)	(inches)	(inches)	(inches)
0	0	0	

Table 8: Clearance to Combustibles

SECTION 4: RETURN AND SUPPLY AIR REQUIREMENTS

RETURN AIR REQUIREMENTS

Provisions shall be made to permit air in the conditioned space to return to the air handler. Failure to provide means for adequate return air will result in reduced airflow through the air handler causing improper heating and cooling of the living space. Reduced airflow may also cause the cooling coil to freeze up and the electric heat limit(s) to cycle, resulting in premature heating element failure.

NOTE: The return air must be filtered to prevent a buildup of lint, dust, and debris on the coil surface.

Uncased Air Handler – Return Air

An uncased air handler can utilize a louvered ceiling access panel with an integral filter (See Figure 8) as a means of returning the conditioned air from the conditioned space to the air handler. An uncased air handler may also utilize a non-louvered ceiling access panel with a return air duct routed between the ceiling joists from the furred-in area around the air handler to a return air filter grille located in the ceiling. The return air grille must never be located in a closet.

Cased Air Handler – Return Air

A cased air handler can utilize a louvered ceiling access panel with an integral filter (See Figure 8) as a means of returning the conditioned air from the conditioned space to the air handler. A cased air handler may also utilize a non-louvered ceiling access panel with a return air duct attached to the return air opening in the air handler. If a return air duct is used, the return air opening knock-out must be removed to allow the return air to enter the air handler through the return air opening. The return air duct may consist of an elbow that drops directly into a return air filter grille in the ceiling or the return duct may be routed between the ceiling joists to a return air filter grille located in the ceiling away from the air handler.

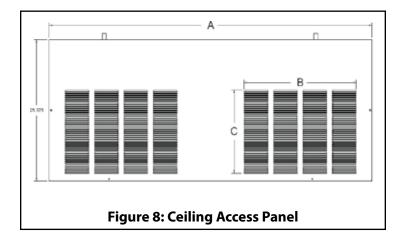
WARNING

NON METALIC DUCTED RETURN SYSTEMS MAY NOT BE ALLOWED IN SOME STATES, COUNTIES, OR CITIES. CHECK ALL STATE, LOCAL AND FIRE CODES TO DETERMINE IF THIS TYPE OF RETURN SYSTEM IS ALLOWED WHERE THE AIR HANDLER IS BEING INSTALLED.

FIRE HAZARD:

NON METALIC DUCTED RETURN SYSTEMS WILL COLLECT DUST AND DEBRIS WHICH CAN RESULT IN A FIRE HAZARD. BE SURE TO THOROUGHLY CLEAN THIS SYSTEM TO REMOVE ALL DUST AND DEBRIS ANNUALLY.

Return Air Filter Location


Horizontal air handlers are not factory equipped with an air filter. The air filter can be installed in the filter rack of the louvered ceiling access panel or it may be located remotely in a ceiling mounted return air filter grille. If a return duct and return air filter grille is used, a non-louvered ceiling access panel will be required.

The louvered ceiling panel air filter size for the HEC and HEU models is $20'' \times 20'' \times 1''$ (2 required).

NOTE: The recommended minimum filter sizes for a return air filter grille is shown below.

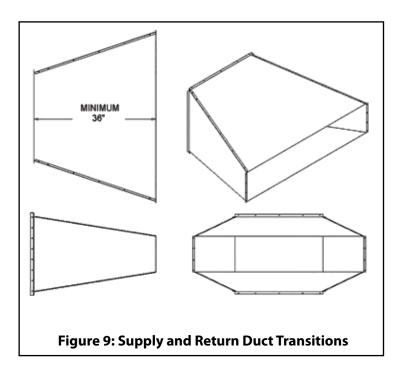
Standard Throw-Away Air Filter @ 300 ft/min or Less 600 CFM = 16" x 20" x 1" 700 CFM = 20" x 20" x 1" 800 CFM = 20" x 20" x 1" 900 CFM = 20" x 24" x 1" 1000 CFM = 20" x 24" x 1"

NOTE: Pleated filters are not recommended due to their higher pressure drop.

PART No.	OVERALL FRAME DIMENSIONS	ТҮРЕ	SUNTHERM HORIZONTAL FAN COIL MODELS
87JUA020	40.875" X 25.375	LOUVERED	HEXX-XX-X-A
87JUA021	46.875" X 25.375	LOUVERED	HEXX-XX-X-B
87JUA022	53.875" X 25.375	LOUVERED	HEXX-XX-X-C
87JUA023	60.875" X 25.375	LOUVERED	HEXX-XX-X-D
CPNL1	27.5" X 43"	NON-LOUVERED	HEXX-XX-X-A
CPNL2	27.5" X 49"	NON-LOUVERED	HEXX-XX-X-B
CPNL3	27.5″ X 55.5″	NON-LOUVERED	HEXX-XX-X-C
CPNL4	27.5″ X 62.5″	NON-LOUVERED	HEXX-XX-X-D

Table 9: Optional Ceiling Access Panels

M WARNING


IMPACT HAZARD

Use extreme caution when removing the ceiling access panel screws. The panel is secured to the frame assembly with the thumb screws. Once the thumb screws have been removed, the ceiling access panel will swing down rapidly and can injure anyone standing underneath the panel. The panel must be supported from underneath as it swings downward to prevent injury.

The louvers can also have sharp edges which can cut hands or fingers. Using gloves is recommended when servicing the air handler.

🛕 IMPORTANT

USING A DUCTED RETURN WILL RESULT IN QUIETER OPERATION THAN USING A LOUVERED CEILING ACCESS PANEL USED FOR RETURN AIR.

SUPPLY AIR REQUIREMENTS

The horizontal air handler can be mounted into the ceiling to allow horizontal left supply air flow or horizontal right supply air flow. The supply air plenum is attached and secured to the air handler duct flanges using screws. Use a non-tape sealant such as mastic or an aerosol sealant to seal the plenum to the air handler to prevent air leakage. The supply plenum must be the same size as the supply air opening.

The entire supply duct system must be designed for a total of 0.20" W.C. static pressure drop or less and each individual duct must be sized to deliver the proper amount of air to each room of the conditioned space. Holes cut in the supply plenum for ducts must be the same size as the supply ducts. Use a duct starting collar to attach the ducts to the plenum. Use a non-tape sealant such as mastic or an aerosol sealant to seal the ducts to the plenum to prevent air leakage.

If the supply duct system is installed in an unconditioned space, the duct system must be insulated and installed in accordance with local codes.

NOTE: Cased air handlers require return and supply transition ducts to assure proper airflow. Uncased air handlers only require a supply duct transition. See Figure 9 below for factory recommendations. The area in the ceiling where the air handler is to be located should have a framed in structure so the air handler can be properly mounted and secured. The inside height of the area must be 12 inches. Prior to installing the air handler, holes must be cut into the frame for the refrigerant tubing, drain line(s), electrical wiring, thermostat wiring, and outdoor unit control wiring to enter the air handler. The air handler must be level in both directions to allow proper condensate drainage.

WARNING

Extreme caution must be taken that no internal damage will result if screws or holes are drilled into the cabinet.

M WARNING

The air handler and enclosure must be covered during the drywall installation, texturing, and painting process to prevent spray and debris from collecting on and entering the air handler and enclosure.

Cased Air Handler

The following steps are required to properly install a cased air handler.

- 1. Remove the top shipping cover and corner posts.
- 2. Remove the bottom shipping cover.
- 3. Use screws to secure the 4 straps to the ceiling joists where the air handler will be installed (See Figure 10). The straps must be located so the hooks in the straps line up with the slots in the base of the air handler.
- 4. Raise the air handler into place and place the hooks into the slots in the base. Bend the hooks back to keep the hooks from slipping out of the slots in the base.
- 5. Connect the supply air plenum to the air handler supply air duct flanges as described in **SUPPLY DUCT**
- **REQUIREMENTS** found in **SECTION 4** of these instructions. **6. New Installations Only:**
 - a. If a non-louvered ceiling access panel is being used, connect the return air duct to the air handler as described in **RETURN AIR REQUIREMENTS / Cased Air Handler** found in **SECTION 4** of these instructions.
 - b. After the air handler is mounted, a 2x2 or 2x4 frame must be installed around the base of the air handler to create an air-tight seal and support the ceiling access panel frame.
 - c. Install the ceiling access panel.
 NOTE: The ceiling access panel is sold separately. It is not included with the air handler.
- 7. Remove the thumb screws that secure the ceiling access panel and slowly swing the panel down.
- 8. Remove the control box cover.
- 9. Connect the electrical supply wires and the thermostat control wires to the appropriate terminal block and pigtails in the control box as described in **SECTIONS 8 and 9** of these instructions.

NOTE: An ON/OFF switch must be installed in the supply circuit to disconnect the power to the air handler during servicing.

10. Connect the refrigerant lines or chilled water lines to the

MORTEX PRODUCTS INC. 501 TERMINAL RD FORT WORTH, TX 76106

coil as described in **SECTIONS 6 and 7** of these instructions.

- 11. Make the necessary blower motor speed changes as described in **SECTION 10** of these instructions.
- 12. Install the control box cover.
- 13. Raise the ceiling access panel into place and secure with the thumbscrews.
- 14. Turn the power on to the unit by following the procedure found in **SECTION 11** of these instructions and in the Users Information Manual to place the air-handler into service.
- 15. Set the thermostat to the desired operating mode and temperature.

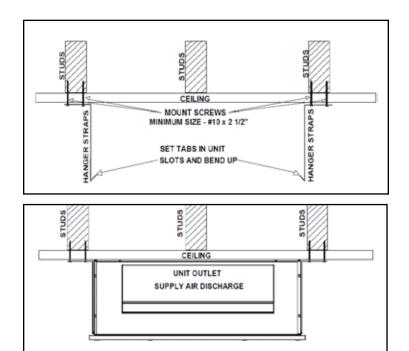


Figure 10: Air Handler Mounting

Uncased Air Handler

The following steps are required to properly install an uncased air handler.

- 1. Remove the top shipping cover and corner posts.
- 2. Remove the screws from the control box cover and remove the cover.
- 3. Remove the bottom shipping cover.
- 4. Raise the air handler into place and install the lag bolts with washers through the slots in the top cover. Tighten the lag bolts until the air handler is securely fastened to the ceiling.
- 5. Connect the supply air plenum to the air handler supply air duct flanges as described in **SUPPLY DUCT REQUIREMENTS** found in **SECTION 4** of these instructions.

6. New Installations Only:

- a. If a non-louvered ceiling access panel is being used, install the return air duct as described in RETURN AIR
 REQUIREMENTS / Uncased Air Handler found in SECTION 4 of these instructions.
- b, After the air handler is mounted, a 2x2 or 2x4 frame must be installed around the base of the air handler to create an air tight seal and support the ceiling access panel frame.
- c. Install the ceiling access panel.

NOTE: The ceiling access panel is sold separately. It is not

included with the air handler.

- 7. Remove the thumb screws that secure the ceiling access panel and slowly swing the panel down.
- 8. Remove the control box cover.
- 9. Connect the electrical supply wires and the thermostat control wires to the appropriate terminal block and pigtails in the control box as described in **SECTIONS 8 and 9** of these instructions.

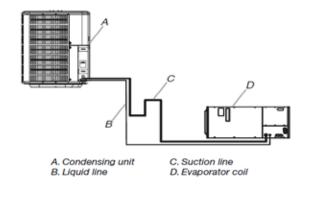
Note: An ON/OFF switch must be installed in the supply circuit to disconnect the power to the air handler during servicing.

- 10. Connect the refrigerant lines or chilled water lines to the coil as described in **SECTIONS 6 and 7** of these instructions.
- 11. Make the necessary blower motor speed changes as described in **SECTION 10** of these instructions.
- 12. Install the control box cover.
- 13, Raise the ceiling access panel into place and secure with the thumbscrews.
- 14. Turn the power on to the unit by following the procedure found in **SECTION 11** of these instructions and in the Users Information Manual to place the air-handler into service.
- 15. Set the thermostat to the desired operating mode and temperature.

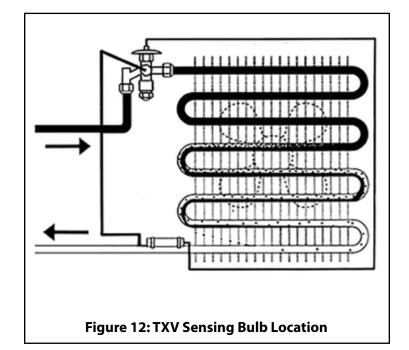
SECTION 6: REFRIGERANT PIPING, TXV, FLOWRATOR, CONDENSATE DRAIN

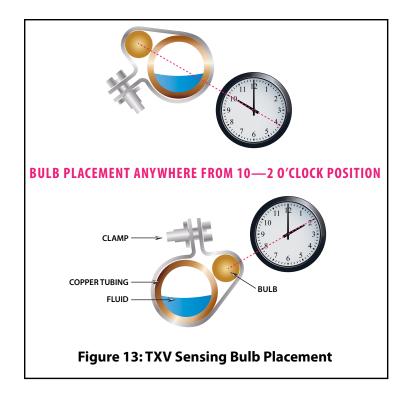
DX Cooling / Chilled Water Cooling

DX Refrigerant Piping:


Air handlers with DX type evaporator coils require liquid and suction piping sized in accordance with the outdoor unit manufacturer's instructions. The DX coil has sweat copper connections. Refrigerant lines should be soldered with silver solder or high temperature brazing alloy. The suction line must be insulated to prevent condensate from forming and dripping off. Armaflex (or equivalent) with 3/8" (1 cm) minimum wall thickness is recommended. In severe conditions, such as hot or high humidity areas, insulation with 1/2" (1.3 cm) minimum wall thickness may be required. If the outdoor unit is installed above air handler, oil traps are required at equal intervals along suction line (See Figure 11). Horizontal suction lines should slope downward 1 inch for every 20 feet toward the outdoor unit. Flow dry nitrogen through refrigerant lines during the soldering operation to prevent oxidation of the inside surface of the copper tubing which can result in debris plugging the TXV or orifice screen.

SPECIAL INSTRUCTIONS FOR COILS WITH THERMAL EXPANSION VALVES (TXV)


The thermal expansion valve (TXV) used in this air handler has a built-in check valve making it heat pump capable. The external equalizer line attached to the TXV has a female flare nut with built in Schrader valve depressor that attaches to the Schrader valve port located on the coil suction manifold.


A TXV has a thermostatic element separated from the valve body by a diaphragm designed to regulate the rate at which refrigerant flows into the evaporator.

- Install 1 oil trap for a height difference of 15 ft to 25 ft (4.6 m to 7.6 m) between indoor and outdoor units.
- Install 2 oil traps for a height difference of 26 ft to 50 ft (7.9 m to 15.2 m) between indoor and outdoor units.
- Install 3 oil traps for a height difference of 51 ft to 100 ft (15.5 m to 30.5 m) between indoor and outdoor units.
- Install 4 oil traps for a height difference of 101 ft to 150 ft (30.8 m to 45.7 m) between indoor and outdoor units.

Figure 11: Air Handler Below Outdoor Unit Refrigerant Lines

The best location for the TXV sensing bulb is on a horizontal section of the suction line tube and positioned between 10 o'clock and 2 o'clock on the tube. (See Figures 7 and 8).

NOTE: The sensing bulb must never be located at the bottom of the suction line due to the possibility of oil and refrigerant laying in the bottom of the pipe causing false signals.

The sensing bulb must be able to sense the temperature of the superheated suction vapor and must therefore not be located in a position that will expose it to extraneous heat/cold. The sensing bulb must be insulated to isolate it from the surrounding air.

The TXV must be the proper size and type to achieve the performance ratings of the system.

NOTE: If a non-bleed type TXV is used, the outdoor unit may require a hard start kit to allow the compressor to start under load.

How the TXV Controls Superheat

The TXV is a precision device designed to regulate the rate at which liquid refrigerant flows into the evaporator. This controlled flow is necessary to provide optimum performance and to prevent the return of liquid refrigerant to the compressor. The TXV separates the high pressure and low-pressure sides of a refrigeration or air conditioning system. Liquid refrigerant enters the TXV under high pressure, but the pressure is reduced when the flow of the refrigerant is restricted by an internal moving pin and port.

It is important to remember that the TXV only controls the level of superheat of the refrigerant in the suction line. The TXV is not designed to control air temperature, head pressure, capacity, suction pressure, or humidity. Attempts to adjust the TXV to control any of these system variables will lead to poor system performance and possible compressor failure.

The TXV responds to the temperature of refrigerant gas as it leaves the evaporator. This temperature is detected by the sensing bulb which is located near the evaporator outlet. The TXV also responds to the refrigerant pressure within the evaporator, which is transmitted to the TXV by an equalizer tube connected to the coil suction manifold. By responding to these variables, the TXV maintains a predetermined superheat level exiting the evaporator which maintains proper system stability, performance, and reliability.

TXV TROUBLESHOOTING

The thermostatic expansion valve (TXV) is like the carburetor in a car engine. It opens and closes to allow the correct amount of refrigerant flow through the system. When the TXV isn't working properly, the capacity and efficiency of the system is reduced. If a faulty TXV is suspected, perform the following tests:

Connect refrigerant gauges to the system and check that the refrigerant pressures, liquid subcooling and suction superheat levels are correct according to the outdoor unit charging chart. Subcooling at the outdoor unit liquid service valve is normally around 10°F and superheat at the outdoor unit suction service valve is normally between 8-12°F, but these can vary depending on the manufacturer and model of the outdoor unit.

Check to see if the indoor airflow through the system is correct. Check to see if the indoor and outdoor coils and indoor air filters are dirty. Clean dirty coils and clean/replace dirty air-filters as necessary before measuring air-flow and checking pressures, superheat, and subcooling.

Make sure the refrigerant charge in the system is correct. This step may require weighing the refrigerant in the system. Once refrigerant charge weight has been adjusted as necessary, recheck the pressures, subcooling and superheat. If these values are still not correct, the TXV may be defective or the TXV inlet strainer or the liquid line filter dryer is plugged with debris.

A good way to determine if the TXV is defective is to remove the TXV's sensing bulb from the suction line and check the pressures, subcooling, superheat again. No change in the pressures, subcooling, and superheat levels is an indication the TXV is defective. Another test that can be performed is to place the sensing bulb in ice water and recheck the pressures, superheat, and subcooling levels. If these values don't change, the TXV is likely defective.

Additional TXV Troubleshooting Information Low Suction Pressure – High Superheat

POSSIBLE CAUSES:

- 1. Undersized TXV
- 2. TXV superheat adjustment too high
- 3. High indoor coil pressure drop due to internal restriction
- 4. TXV sensing bulb installed on bottom of suction line
- 5. Restricted or capped TXV external equalizer tube
- 6. Improper TXV external equalizer location (must be located on suction manifold after the last feeder tube)
- 7. Low refrigerant charge
- 8. Plugged liquid line filter dryer
- 9. Plugged TXV inlet strainer
- 10. Low outdoor ambient temperature

High Suction Pressure – Low Superheat

POSSIBLE CAUSES:

- 1. Oversized TXV
- 2. TXV seat leakage
- 3. TXV superheat adjustment too low
- 4. Improper TXV sensing bulb installation

- 5. Bad compressor (low capacity)
- 6. Incorrectly located external equalizer line (must be located on suction manifold after the last feeder tube)

Low Suction Pressure – Low Superheat

- POSSIBLE CAUSES: 1. Low system load:
 - a. Insufficient indoor airflow
 - b. Dirty indoor air filters
 - c. Return air too cold
 - d. Indoor coil icing or frosting
- 2. Poor air distribution over indoor coil
- 3. Improper indoor/outdoor coil internal volume balance on heat pump systems (improper air handler/outdoor unit match-up; indoor coil too big or too small causing incorrect refrigerant charge balance between cooling and heating modes)
- 4. Oil trapped in indoor coil

Things to Check Before Replacing TXV

- 1. Slowly loosen the flare nut on the TXV external equalizer connected to the suction line port with a flare nut. If there is a large pressure release when the nut has been loosened, tighten the nut. If this results in a slight pressure release or no pressure release; the Schrader valve stem is not being depressed. Install an anti-blow back fitting to the external equalizer line of the TXV to depress the Schrader valve stem and check for proper operation of the TXV.
- 2. Remove the sensing bulb from the suction line and hold in a warm hand. The high side pressure should drop and low side pressure should increase as the TXV opens. Place the sensing bulb in ice water. The high side pressure should increase and the low side pressure should decrease as the TXV closes. If the pressures do not change, the TXV is faulty.

FLOWRATOR TO TXV CONVERSION

While thermal expansion valves can be factory installed, they are normally available in kit form for field installation. Follow the installation instructions provided with the TXV kit. The TXV must be installed before system is charged with refrigerant. Installation of the TXV requires no cutting or brazing.

IMPORTANT NOTE: The flowrator piston must be removed from the flowrator distributor prior to the installation of the TXV (See Figure 15).

FIELD INSTALLED TXV KIT INFORMATION

R72DB0053HX: R-410A, 1.5 – 2.5 Ton, 15% Bleed, Inlet: Male Rotolock. Outlet: Female Swivel Nut **R72DB0054HX:** R-410A, 3.0 – 5.0 Ton, 15% Bleed, Inlet: Male Rotolock, Outlet: Female Swivel Nut

WARNING

The indoor coil is pressurized with nitrogen. Relieve pressure before installing TXV by depressing Schrader valve on coil suction manifold.

Field Installed TXV Installation Procedure

- 1. Remove the cap on Schrader valve port on coil suction manifold.
- 2. Depress the Schrader valve to relieve the pressure inside the coil.
- 3. Only after coil pressure has been relieved, turn the female swivel nut counter-clockwise to separate it from the distributor.
- 4. Remove the piston orifice from the flowrator distributor assembly using a small diameter wire or paper clip.
- 5. As shown in Figure 14, the TXV assembly must be installed between the distributor and the liquid line connector.
- 6. Attach the TXV by connecting the female swivel nut on TXV outlet to the flowrator distributor (aligning Teflon seal first) and torque swivel nut to 10-30 ft. lbs.
- 7. Attach the liquid line connector with female swivel nut to male rotolock fitting on TXV inlet (aligning Teflon seal first) and torque swivel nut to 10-30 ft. lbs.

8. Attach equalizer tubing with 1/4" female flare nut that includes depressor to the male Schrader port on the coil suction manifold and torque nut to 10-30 ft. lbs.

- 9. Install the TXV bulb to the suction line using the two bulb clamps furnished with kit.
 - a. The sensing bulb should be installed on a horizontal run of the suction line if possible and should be positioned between 10 o'clock and 2 o'clock as shown in Figure 13.
 - b. If the sensing bulb is installed on a vertical run of the suction line, the bulb should be located at least 6 inches away from any bend and on the side of the tube that is above the inside of the bend. On vertical run bulb installations, the bulb should be positioned with the bulb capillary tube at the top.
 - c. The bulb should be insulated using thermal insulation to protect it from the effect of the surrounding ambient temperature.
- 10. After completing the TXV installation, leak check all TXV fittings and thoroughly evacuate the coil through the service] access fittings on the outdoor unit liquid and suction service valves prior to charging the system with refrigerant.

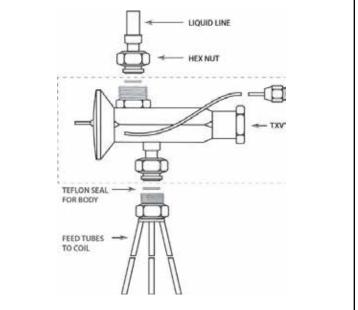


Figure 14: Typical TXV Connections

SPECIAL INSTRUCTIONS FOR COILS WITH FLOWRATOR DISTRIBUTOR ASSEMBLIES

The sizing of the orifice piston should be based on the rated capacity of the outdoor unit and air handler match-up.

Summit provides capacity performance ratings that match both same size and upsized air handlers with specific manufacturer's outdoor units. Consult the local Summit distributor for the proper size orifice piston to be used for a specific outdoor unit model number. The factory installed orifice piston size is marked on the flowrator distributor assembly and the air handler carton.

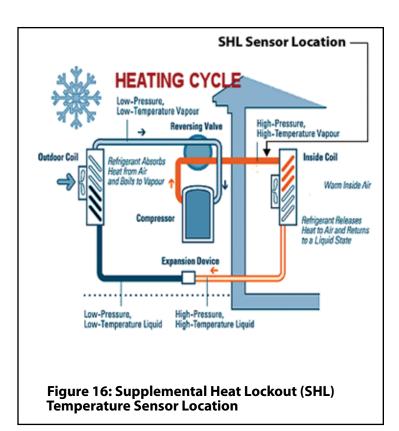
Failure to install the proper size orifice piston can lead to poor system performance and possible compressor damage. A variation of one piston size smaller or larger is not normally critical. Mortex/Summit reserves the right to substitute a factory installed piston one size smaller or greater if the piston size ordered is out of stock. A selection of replacement orifice pistons is available from the local Summit distributor.

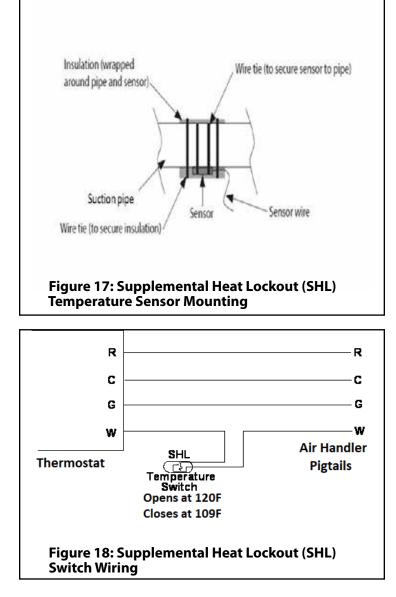
ORIFICE PISTON REPLACEMENT

If the flowrator is being used instead of a TXV, the piston must be installed oriented as shown in Figure 15 in the distributor body and the existing liquid line attached to the flowrator distributor.

- 1. Remove the cap on Schrader valve port on coil manifold.
- 2. Depress the Schrader valve to relieve the pressure inside the coil.
- 3. Only after coil pressure has been relieved, turn the female swivel nut counter-clockwise to separate it from the distributor.
- 4. Replace the orifice piston with the correct size piston for the application. Make sure the tapered end of the piston is facing the feeder tubes on the distributor body.
- 5. Turn the female swivel nut on clockwise the flowrator distributor (aligning Teflon seal first) *and torque swivel nut to* **10-30 ft. lbs.**
- 6. After completing the installation of the correct size orifice piston, leak check the flowrator distributor fitting and thoroughly evacuate the system through the service fittings on the outdoor unit liquid and suction service valves.

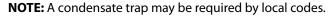
FIELD INSTALLED SUPPLEMENTAL HEAT LOCKOUT (SHL) KIT

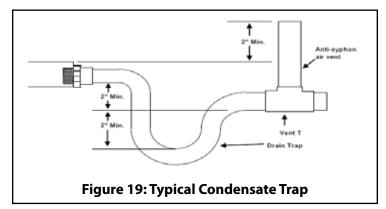

A field installed supplemental heat lockout (SHL) kit must be used with models equipped with electric heat when used in a heat pump system. The purpose of the SHL is to prevent excessive refrigerant pressures due to the indoor coil being located downstream of the electric heating elements. If the electric heater is energized while the heat pump is operating in the heat mode, the additional heat imparted to the indoor coil by the electric heater elements can cause the refrigerant pressures to be excessively high. The SHL temperature switch contacts will open and lock out the electric heat when the hot gas line temperature entering the indoor coil reaches approximately 120°F. The contacts will close when the hot gas line temperature falls to approximately 109°F which will allow the electric heat to operate.


Installation of the SHL Kit

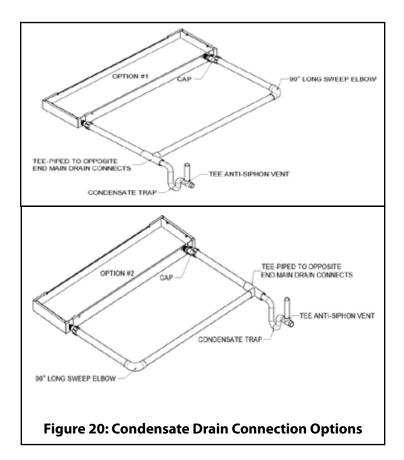
After brazing and leak testing of the refrigerant lines is completed and the lines have sufficiently cooled, mount the SHL temperature sensor securely to the suction/hot gas refrigerant line that connects to the coil manifold (larger line; suction in cooling mode; hot gas in heating mode) with the 2 plastic wire ties provided in the kit assuring that the temperature switch has good contact with the refrigerant line and is not located where it may be damaged. Wrap the sensor on the refrigerant line using the insulation tape provided in the kit and secure with the insulation with the 2 plastic wire ties provided in the kit (See Figure 17). SHL Switch Wiring:

One of the SHL switch pigtail leads is connected to the air handler white pigtail wire with a wire nut (See Figure 18). The other SHL switch pigtail lead is connected to the white thermostat wire from the thermostat W terminal and secured with a wire nut. Check the outdoor unit and thermostat wiring diagrams to assure the SHL will prevent the supplemental electric heat from being energized when the switch contacts are open.





CONDENSATE DRAIN PIPING


The blow-through DX coil design of this air handler will create positive pressure in the condensate drain system. To prevent air from being blown out of the primary condensate drain line, it is recommended that a minimum 2-inch trap with an antisiphon air vent be installed as shown in Figure 19. Piping from the condensate drain connection must have adequate slope for drainage to a visible area. Do not pipe the condensate drains from two different air handlers into one common drain. Cap any unused condensate drain pan connections.

The cooling DX coil condensate drain pan has a 3/4" NPT male primary connection on each side and one 3/4" NPT male secondary connection on one side. The two primary drain connections may need to be tied together before the trap to allow the drain pan to fully drain because of the high air velocity across the coil. Refer to Figure 20 for options for the primary drain connections.

NOTE: The condensate drain connections are located on the condensate drain pan inside the cabinet of a cased air handler. Condensate drain piping must enter through the holes in the cabinet and then connect to the drain pan connections within the cabinet. Refer to Figure 5 for condensate drain pipe entrances for condensate drain pipe entrances for cased air handlers.

Secondary Drain Line

Installing a trapped secondary drain line is recommended to prevent condensate pan overflow should the primary drain become clogged. The secondary drain should not be connected to a trap and must be routed to an area like a bathtub or outside roof soffit where water dripping out of it is visible indicating a plugged primary drain line. If secondary drain is dripping, the primary drain needs to be cleaned out. A secondary drain float switch that will shut the cooling system off should the primary drain become clogged may be installed instead of a secondary drain line.

NOTE: Do not pipe the primary and secondary drains together. If the secondary drain is not used, it must be capped.

<u> WARNING</u>

This air handler must not be located where water can cause damage to the adjacent area if the condensate drain pan should overflow or if any condensate drain connections should leak.

When such locations can't be avoided, a suitable auxiliary drain pan must be installed under the air handler and connected to an adequate drain. The auxiliary drain pan should be at least 2" greater in length and width than the air handler dimensions and should be at least 1.5" deep. The manufacturer of this air handler is not liable for any water damage related to the air handler.

SECTION 7: HOT AND CHILLED WATER

Hot Water Piping

All water piping must be supported independent of the air handler to prevent vibration and stress on the coil headers. Swing joints or flexible fittings must be provided to absorb expansion and contraction of the piping. Rigid piping reduces the effectiveness of vibration isolators. Water pipes must be adequately vented in order to prevent air binding. The air handler is equipped with manual air vents mounted on the coil manifold.

Total hot water piping length should not exceed 140 feet. All hot water piping to the coil should be 3/4 inch ID (7/8 inch OD) copper. CPVC and PEX piping may also be used in applications where the water temperature does not exceed 150°F. It is recommended a water isolation valve and a union be placed in the water lines to and from the coil, near the coil, for serviceability, repair or replacement of the coil. A thermal expansion tank is recommended on any closed loop system to relieve thermal expansion due to pressure increase.

After piping has been installed, allow the system to fill with water and check connections for leaks. To ensure complete filling of the system, follow the Filling Hydronic Heating System With Water, Purging Air From System, and System Startup procedure found in **SECTION 10: Final System Checkout and Startup** in these instructions.

WARNING

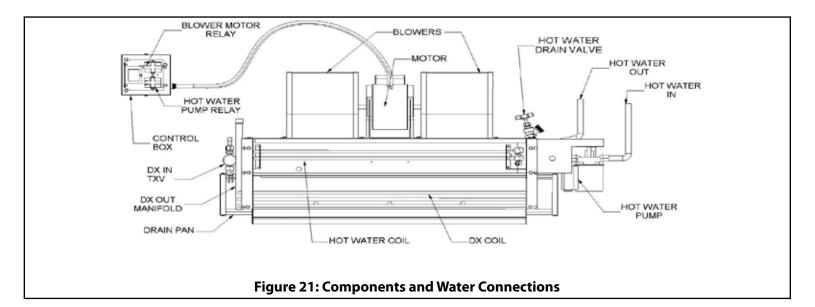
Hot water from a boiler used to satisfy heating requirements can be heated to temperatures of 180°F. Parts containing water this hot can scald very quickly. Use extreme caution when servicing or performing maintenance on any parts containing hot water.

À WARNING

Toxic chemicals used for treatment of boilers or non-potable water heating appliances shall never be introduced into a potable water space heating system.

WARNING

The air handler must not be located where water will cause damage to the adjacent area should any water connection leak.


When such locations can't be avoided, a suitable auxiliary drain pan must be installed under the air handler and connected to an adequate drain. The auxiliary drain pan should be at least 2 inches greater in length and width than the air handler dimensions and should be at least 1.5 inches deep.

The manufacturer of this air handler is not liable for any water damage related to the air handler.

"Massachusetts requires an electronically controlled pump timer that activates the pump every 6 hours for 60 seconds and limits the distance between the water heater and air handler to 50 feet max."

When system requires water at temperatures higher than required for other uses, a means such as a mixing valve must be installed to temper the water temperature for those uses in order to reduce the potential of a scald hazard.

			-	H	EATING P	'ERFORM	IANCE D	AIA:	,				
1		1	Ĥ	IOT W AT	ER CAP	ACITIES	0	1		L	1.	PRESS.	PRES
HOT WATER			70°F	ENTERIN	IG AIR TI	EMPERA	TURE					DROP	DRO
SLAB-COIL			ENTE	RING W	ATER TE	M PERA	TURE					WATER	AIR
MODEL	100°F	110°F	120°F	130°F	140°F	150°F	160°F	170°F	180°F	CFM	GPM	(FT-W TR)	(IW C
	6,516	8,735	10,974	13,228	15,496	17,777	20,067	23,367	24,674		2.0	0.78	(
	6,987	9,357	11,742	14,141	16,550	, 18,970	21,399	23,835	26,277		3.0*	1.61	
	7,253	9,706	12,174	14,651	17,138	19,634	22,137	24,647	27,162	480	4.0	2.68	0.1
	7,425	9,932	12,450	14,979	17,515	20,059	22,609	25,165	27,726		5.0	3.97	
	7,547	10,090	12,644	15,208	17,779	20,356	22,938	25,526	28,118		6.0	5.49	
	7,280	9,682	12,170	14,677	17,201	19,740	22,293	24,856	27,428		2.0	0.78	
	7,812	10,467	13,141	15,832	18,537	21,255	23,984	26,722	29,469		3.0*	1.61	
	8,152	10,914	13,694	16,487	19,292	22,108	24,935	27,768	30,610	590	4.0	2.68	0.1
	8,374	11,205	14,052	16,911	19,780	22,659	25,547	28,441	31,342		5.0	3.97	
	8,531	11,410	14,304	17,209	20,123	23,045	25,976	28,912	31,854		6.0	5.49	
	7,791	10,456	13,147	15,862	18,597	21,349	24,116	26,897	29,689		2.0	0.78	
	8,497	11,390	14,305	17,240	20,193	23,160	26,141	29,133	32,134		3.0*	1.61	
HE*2***A HE*4***A	8,906	11,929	14,371	18,030	21,105	24,192	27,291	30,400	33,517	695	4.0	2.68	0.2
	9,175	12,281	15,406	18,546	21,698	24,862	28,036	31,219	34,410		5.0	3.97	
	9,366	12,531	15,714	18,910	22,117	25,334	28,561	31,795	35,036		6.0	5.49	
	8,291	11,131	14,002	16,899	19,819	22,758	25,714	28,686	31,670		2.0	0.78	
	9,105	12,208	15,339	18,491	21,664	24,854	28,060	31,278	34,508		3.0*	1.61	
	9,581	12,837	16,115	19,413	22,730	26,061	29,405	32,761	36,127	800	4.0	2.68	0.2
	9,895	13,250	16,626	20,018	23,427	26,849	30,282	33,726	37,179		5.0	3.97	
	10,120	13,544	16,988	20,448	23,921	27,406	30,902	34,402	37,920		6.0	5.49	
	8,508	11,425	14,373	17,350	20,350	23,371	26,410	29,465	32,533		2.0	0.78	
	9,372	12,568	15,792	19,041	22,311	25,599	28,904	32,222	35,552	1	3.0*	1.61	
	9,878	13,238	16,621	20,025	23,448	26,887	30,340	33,806	37,282	850	4.0	2.68	0.2
	10,215	13,680	17,167	20,672	24,194	27,730	31,280	34,839	38,409		5.0	3.97] .
	10,455	13,995	17,555	21,132	24,723	28,328	31,944	35,570	39,204		6.0	5.49	
	7,165	9,597	10,046	14,509	16,984	19,470	21,965	24,468	26,977		2.0	0.96	
	7,665	10,258	12,863	15,481	18,109	20,746	23,390	26,040	28,696		3.0*	1.96	
	7,943	10,624	13,316	16,018	18,728	21,446	24,170	26,900	29,635	480	4.0	3.27	0.0
	8,122	10,858	13,604	16,360	19,122	21,891	24,665	27,445	30,228		5.0	4.86	
	8,247	11,021	13,805	16,597	19,396	22,200	25,009	27,822	30,639		6.0	6.71	
	7,974	10,686	13,419	16,170	18,935	21,715	24,505	27,304	30,113		2.0	0.96	
	8,614	11,532	14,467	17,418	20,381	23,356	26,340	29,332	32,332		3.0*	1.96	
	8,974	12,008	15,055	18,116	21,188	24,269	27,359	30,456	33,559	590	4.0	3.27	0.0
	9,208	12,314	15,434	18,564	21,705	24,854	28,010	31,173	34,340		5.0	4.86	
	9,372	12,529	15,698	18,878	22,066	25,261	28,463	31,671	34,884		6.0	6.71	
	8,637	11,579	14,545	17,533	20,538	23,559	26,593	29,638	32,693		2.0	0.96	
HE*2***B	9,406	12,596	15,808	19,037	22,283	25,542	28,812	32,092	35,980		3.0*	1.96	
HE*4***B	9,845	13,176	16,525	19,890	23,268	26,658	30,058	33,467	36,883	695	4.0	3.27	0.1
	10,130	13,552	16,990	20,441	23,904	27,377	30,859	34,350	37,847		5.0	4.86	
	10,332	13,816	17,316	20,827	24,349	27,881	31,420	34,967	38,519		6.0	6.71	
	9,217	12,361	15,533	18,728	21,944	25,178	28,426	31,688	34,960		2.0	0.96	
	10,110	13,544	17,002	20,482	23,979	27,492	31,019	34,556	38,104	.	3.0*	1.96	
	10,626	14,226	17,846	21,485	25,140	28,809	32,489	36,180	39,879	800	4.0	3.27	0.1
	10,964	14,672	18,397	22,138	25,894	29,662	33,441	37,229	40,024		5.0	4.86	
	11,203	14,985	18,785	22,599	26,425	30,262	34,109	37,965	41,827		6.0	6.71	
	9,469	12,701	15,962	19,249	22,557	25,883	29,225	32,581	35,948		2.0	0.96	
	10,420	13,961	17,528	21,118	24,726	28,351	31,991	35,643	39,304		3.0*	1.96	
	10,972	14,690	18,432	22,192	25,970	29,763	33,568	37,384	41,208	850	4.0	3.27	0.1
	11,334	15,169	19,022	22,893	26,780	30,679	34,590	38,511	42,440		5.0	4.86	
	11,592	15,507	19,440	23,389	27,351	31,325	35,310	39,303	43,304		6.0	6.71	

Table 10: HE*2/HE*4***A and HHE*2/HE*4***B Hot Water Slab Coil Capacity

			Pe				ot Wate MANCE D	r Slab (ATA:	Coils				
			F		TER CAP	ACITIES	@					PRESS.	PRES
HOT WATER			70°F	ENTERIN	IG AIR T	EMPERA						DROP	DRO
SLAB-COIL						M PERA						WATER	AIR
MODEL	100°F	110°F	120°F	130°F	140°F	150°F	160°F	170°F	180°F	CFM	GPM	(FT-WTR)	(IW C
MODEL		-	1 20 F	1 30 F 18,728	21,944		28,246	-		Сгм	-	. ,	(100 C
	9,217 10,110	12,361 13,544	17,002	20,482	23,979	25,178 27,492	31,019	31,688 34,556	34,960 38,104	-	2.0 3.0*	0.96	
	10,626	14,226	17,846	20,482	25,140	28,809	32,489	36,180	39,879	800	4.0	3.27	0.16
	10,964	14,672	18,397	22,138	25,894	29,662	33,441	37,229	40,024		5.0	4.86	
	11,203	14,985	18,785	22,599	26,425	30,262	34,109	37,965	41,827		6.0	6.71	
	9,754	13,086	16,448	19,837	23,249	26,681	30,129	33,592	37,067		2.0	0.96	
	10,773	14,436	18,127	21,842	25,578	29,331	33,099	36,880	40,673		3 .0 *	1.96	
	11,368	15,222	19,101	23,001	26,919	30,854	34,802	38,761	42,730	910	4.0	3.27	0.20
	11,759	15,739	19,770	23,759	27,996	31,847	35,909	39,482	44,064	-	5.0	4.86	
	12,038	16,105	20,193	24,296	28,415	32,547	36,690	40,842	45,002		6.0	6.71	
	10,212	13,704	17,299	20,784	24,364	27,965	31,585	35,220	38,868		2.0	0.96	
HE*2***A	11,345	15,207	19,100	23,020	26,962	30,923	34,903	38,896	42,901	1,015	3 .0 *	1.96	0.24
HE*4***A	12,014	16,091	20,195	24,323	28,472	32,639	36,820	41,015	45,221	1,015	4.0	3.27	0.24
	12,455	16,675 17,090	20,917 21,431	25,181 25,791	29,464 30,167	33,763 34,559	38,075 38,962	42,399 43,376	46,733 47,800	-	5.0 6.0	4.86 6.71	
	10,645	14,288	17,968	21,680	25,418	29,180	32,962	36,760	40,574		2.0	0.96	
	11,893	14,288	20,032	24,147	28,288	32,449	36,630	40,827	45,037	-	3.0*	1.96	
	12,636	16,928	21,250	25,599	29,970	34,361	38,769	43,192	47,626	1,125	4.0	3.27	0.29
	13,129	17,580	22,057	26,559	31,080	35,620	40,175	44,743	49,323		5.0	4.86	
	13,483	18,047	22,634	27,243	31,871	36,515	41,173	45,843	50,523	-	6.0	6.71	
	11,020	14,795	18,608	22,456	26,333	30,324	34,157	38,098	42,054		2.0	0.96	
	12,394	16,593	20,849	25,137	29,452	33,790	38,148	42,524	46,914		3.0	1.96	
	13,185	17,666	22,181	26,726	31,294	35,884	40,493	45,117	49,754	1,230	4.0	3.27	0.34
	13,727	18,383	23,069	27,781	32,515	37,270	42,041	46,825	51,623		5.0	4.86	
	14,116	18,898	23,705	28,536	33,388	38,257	43,142	48,040	52,950		6.0	6.71	
	9,607	12,879	16,177	19,498	22,838	26,195	29,566	32,949	36,341	-	2.0	1.04	
	10,535	14,109	17,706	21,322	24,957	28,605	32,267	35,939	39,621	800	3 .0 *	2.14	0 1 2
	11,069	14,814	18,579	22,362	26,160	29,971	33,793	37,625	41,465	800	4.0	3.57	0.13
	11,417	15,273	19,146	23,036	26,939	30,853	34,777	38,710	42,651		5.0	5.30	
	11,662	15,596	19,546	23,510	27,485	31,472	35,467	39,470	43,480		6.0	7.32	
	10,177 11,238	13,647 15,055	17,146 18,897	20,671 22,763	24,217 26,648	27,782 30,551	31,363 34,467	34,956 38,396	38,561 42,375	-	2.0 3 .0 *	1.04 2.14	
	11,856	15,870	19,908	23,967	28,044	32,135	36,239	40,554	44,478	910	4.0	3.57	0.17
	12,260	16,405	20,570	24,753	28,952	33,165	37,389	41,622	45,865		5.0	5.30	
	12,547	16,783	21,037	25,308	29,592	33,889	38,197	45,513	46,837		6.0	7.32	
	10,633	14,301	17,973	21,672	25,395	29,138	32,899	36,673	40,460		2.0	1.04	
HE*2***B	11,847	15,873	19,929	24,011	28,115	32,237	36,376	40,527	44,690		3 .0 *	2.14	
нс"2"""В НЕ*4***В	12,542	16,792	21,069	25,370	29,690	34,027	38,377	42,741	47,114	1,015	4.0	3.57	0.20
_	13,000	17,398	21,819	26,261	30,720	35,195	39,683	44,182	48,690	-	5.0	5.30	
	13,326	17,828	22,351	26,892	31,450	36,021	40,604	45,198	49,800		6.0	7.32	
	11,122	14,921	18,755	22,619	26,510	30,421	34,352	38,299	42,258		2.0	1.04	
	12,429	16,658	20,918	25,207	29,521	33,854	38,205	42,571	46,949	1,125	3.0*	2.14	0.24
	13,203	17,682	22,190	26,724	31,279	35,853	40,443	45,047	49,622	1,125	4.0	3.57	0.24
	13,716 14,083	18,360	23,030	27,723	32,436	37,166	41,910	46,667	51,434	+	5.0	5.30	
	14,083	18,844 15,458	23,629 19,433	28,434 23,441	33,257 27,477	38,096	42,948 35,614	47,812 39,710	52,685 43,819		6.0 2.0	7.32	
	12,940	17,345	21,786	26,258	30,755	31,536 35,275	39,813	44,368	43,819 48,937		3.0*	2.14	
	13,788	18,468	23,180	27,921	32,685	37,469	42,271	47,088	51,918	1,230	4.0	3.57	0.28
	14,353	19,215	24,106	29,022	33,960	38,917	43,890	48,876	53,874		5.0	5.30	
	14,757	19,749	24,767	29,808	34,868	39,947	45,039	50,144	55,260	1	6.0	7.32	

Table 11: HE*2/HE*4***B and HE*2/HE*4***C Hot Water Slab Coil Capacity

			ŀ		FER CAP	ACITIES	0	-	-			PRESS.	PRESS
HOT WATER			70°F	ENTERIN	NG AIR T	EMPERA	TURE					DROP	DROP
SLAB-COIL		ENTERING W ATER TEM PERATURE										WATER	AIR
MODEL	100°F	110°F	120°F	130°F	140°F	150°F	160°F	170°F	180°F	CFM	GPM	(FT-W TR)	(IW C)
	10,205	13,671	17,162	20,674	24,204	27,748	31,305	34,873	38,448		2.0	1.20	
	11,188	14,975	18,784	22,612	26,455	30,313	34,181	38,058	41,944		3.0*	2.46	
	11,749	15,717	19,704	23,707	27,723	31,755	35,794	39,842	43,898	800	4.0	4.09	0.10
	12,112	16,197	20,298	24,414	28,543	32,682	36,830	40,985	45,148		5.0	6.07	
	12,368	16,534	20,716	24,909	29,115	33,330	37,553	41,783	46,019		6.0	8.39	
	10,824	14,505	18,213	21,945	25,697	29,465	33,248	37,042	40,844		2.0	1.20	
	11,954	16,005	20,281	24,178	28,294	32,424	36,567	40,721	44,884		3.0*	2.46	
	12,607	16,868	21,152	25,454	29,773	34,106	38,450	42,804	43,166	910	4.0	4.09	0.12
	13,032	17,430	21,848	26,282	30,732	35,194	39,666	44,147	48,636		5.0	6.07	
	13,332	17,827	22,338	26,865	31,405	35,957	40,518	45,087	49,663		6.0	8.39	
	11,353	15,217	19,111	23,031	26,973	30,933	34,908	38,895	42,893		2.0	1.20	0.15
HE*2***D	12,619	16,898	21,206	25,537	29,888	34,257	38,640	43,034	47,439		3.0*	2.46	
HE*4***D	13,356	17,874	22,418	26,983	31,566	36,164	40,776	45,398	50,030	1,015	4.0	4.09	
	13,840	18,514	23,211	27,926	32,658	37,404	42,163	46,931	51,707		5.0	6.07	
	14,183	18,967	23,771	28,592	33,429	38,278	43,138	48,007	52,884		6.0	8.39	
	11,853	15,890	19,960	24,058	28,179	32,321	36,479	40,650	44,832		2.0	1.20	
	13,255	17,754	22,284	26,840	31,418	36,015	40,628	45,254	49,891		3.0*	2.46	
	14,080	18,846	23,641	28,459	33,298	38,154	43,025	47,908	52,801	1,125	4.0	4.09	0.18
	14,624	19,566	24,534	29,523	34,530	39,553	44,589	49,637	54,694		5.0	6.07	
	15,011	20,078	25,167	30,275	35,401	40,541	45,693	50,856	56,026		6.0	8.39	
	12,286	16,474	20,697	24,949	29,227	33,526	37,842	42,173	46,515		2.0	1.20	
	13,814	18,506	23,231	27,985	32,763	37,561	42,377	47,206	52,048		3.0*	2.46	
	14,719	19,707	24,724	29,767	34,833	39,912	45,017	50,131	55,246	1,230	4.0	4.09	0.21
	15,321	20,502	25,710	30,943	36,195	41,465	46,749	52,046	57,353		5.0	6.07	
	15,750	21,069	26,412	31,778	37,162	42,361	47,975	53,400	58,834		6.0	8.39	

Table 12: HE*2/HE*4**D Hot Water Slab Coil Capacity

Chilled Water Piping

Supply and return chilled water piping to the coil should be 3/4 inch ID for models with a capacity up to 42,000 BTU/H and 1 inch on models with a capacity greater than 42,000 BTU/H. Water piping must always be connected so that the entering water is on the leaving side of the coil for best performance.

				•	enon	mant			PERFO			ed Wate ATA:		0115						
					45°F	Entering	g Wat	er					42°F	Entering	Wate	r				
CHILLED WATER				PRESS.								PRESS.								PRESS.
A-COIL MODEL				DROP WATER	80°F D	B / 67°F	W B	75°F (DB / 63°F	WВ		DROP WATER	80°F D	B / 67°F	W B	75°F D	B / 63°F	WΒ		DROP AIR
	Rows	Circuits	GPM	(FT-WTR)	TH	SH	TR	тн	SH	TR	GPM	(FT-WTR)	тн	SH	TR	тн	SH	TR	CFM	(IN-W C)
HE*3/HE*4**4A	2	4	3.8	4.55	20,469	14,267	10.0	16,406	12,503	8.6	4.4	5.89	23,828	15,709	10.0	19,375	13,946	8.8	480	0.06
HE*3/HE*4**4A	2	4	4.4	5.89	23,750	16,745	10.0	18,984	14,798	8.6	5.2	7.92	27,813	18,498	10.0	22,578	16,356	8.7	590	0.10
HE*3/HE*4**4A	2	4	5.2	7.92	26,870	19,260	10.0	21,719	17,901	8.3	5.6	9.04	30,625	20,846	10.0	25,000	18,580	8.9	695	0.12
HE*3/HE*4**4A	2	4	5.6	9.04	29,375	21,377	10.0	23,594	19,059	8.4	6.2	10.82	33,750	23,179	10.0	27,578	20,604	8.9	800	0.15
HE*3/HE*4**6A	3	6	6.8	6.21	36,563	25,436	10.0	29,219	22,292	8.6	7.8	7.92	42,188	27,723	10.0	34,453	24,865	8.8	850	0.27
HE*3/HE*4**4B	2	4	4.4	7.06	22,891	15,213	10.0	18,242	13,432	8.3	5.0	8.85	26,250	16,831	10.0	21,250	14,889	8.5	480	0.05
HE*3/HE*4**4B	2	4	5.0	8.85	26,484	17,956	10.0	21,094	15,785	8.4	5.6	10.82	30,391	19,732	10.0	24,688	17,561	8.8	590	0.07
HE*3/HE*4**6B	3	6	7.0	7.83	35,078	23,155	10.0	29,496	19,847	8.4	7.6	9.06	39,688	25,281	10.0	32,221	22,210	8.5	695	0.09
HE*3/HE*4**6B	3	6	7.0	7.83	38,164	25,501	10.0	30,469	22,517	8.7	8.4	10.82	44,219	28,214	10.0	35,938	24,958	8.6	800	0.14
HE*3/HE*4**6B	3	6	8.4	10.82	41,406	27,634	10.0	32,866	24,180	7.8	8.8	11.75	46,446	29,937	10.0	37,752	26,482	8.6	850	0.17
HE*3/HE*4**6B	3	6	7.8	9.49	40,174	26,875	10.0	31,953	23,480	8.2	8.6	11.28	45,781	29,421	10.0	37,109	26,026	8.6	800	0.18
HE*3/HE*4**6B	3	8	8.0	4.42	42,344	28,869	10.0	33,750	25,661	8.4	8.8	5.24	48,128	31,435	10.0	39,375	28,227	8.9	910	0.20
HE*3/HE*4**6B	3	8	8.8	5.24	45,428	31,511	10.0	36,324	27,660	8.3	9.6	6.11	51,680	33,962	10.0	42,266	30,461	8.9	1015	0.24
HE*3/HE*4**6B	3	8	9.8	6.34	49,375	34,324	10.0	39,434	30,081	8.0	10.4	7.04	55,625	37,023	10.0	45,508	33,167	8.7	1125	0.28
HE*3/HE*4**6B	3	8	10.4	7.04	52,188	36,333	10.0	41,719	32,157	8.0	10.8	7.53	58,750	39,256	10.0	48,047	35,080	8.9	1230	0.34
HE*3/HE*4**6C	3	8	8.0	4.79	40,469	26,930	10.0	32,205	23,812	8.0	8.4	5.23	45,469	29,198	10.0	37,031	26,079	8.8	800	0.15
HE*3/HE*4**6C	3	8	8.8	5.68	44,492	30,078	10.0	35,313	26,238	8.0	9.2	6.14	50,000	32,318	10.0	40,781	28,798	8.9	910	0.16
HE*3/HE*4**6C	3	8	9.2	6.14	47,985	32,560	10.0	38,125	28,624	8.3	10.0	7.12	54,531	35,780	10.0	44,355	31,487	8.9	1015	0.19
HE*3/HE*4**6C	3	8	10.0	7.12	51,250	35,136	10.0	41,094	31,232	8.2	10.8	8.16	58,281	38,259	10.0	47,500	33,965	8.8	1125	0.22
HE*3/HE*4**6C	3	8	10.8	8.16	54,844	38,043	10.0	43,750	33,393	8.8	11.4	8.98	61,875	41,002	10.0	50,469	36,352	8.8	1230	0.27
HE*3/HE*4**6D	3	8	9.8	7.79	46,642	30,638	10.0	37,018	26,887	7.8	10.4	8.66	52,500	33,452	10.0	42,648	29,388	8.2	800	0.13
HE*3/HE*4**6D	3	8	10.4	8.66	50,020	33,095	10.0	39,688	28,984	7.6	10.8	9.26	56,016	35,803	10.0	45,563	31,711	8.4	910	0.15
HE*3/HE*4**6D	3	8	11.0	9.56	54,078	36,190	10.0	42,969	31,601	7.8	11.4	10.19	60,781	39,216	10.0	49,375	34,647	8.7	1015	0.19
HE*3/HE*4**6D	3	8	11.4	10.19	57,792	39,923	10.0	45,898	34,314	8.0	12.0	11.16	65,097	42,271	10.0	53,047	37,668	8.8	1125	0.21
HE*3/HE*4**6D	3	8	12.0	11.16	60,625	41,205	10.0	48,438	36,279	8.1	12.6	12.16	68,438	44,788	10.0	55,849	39,414	8.9	1230	0.23

Table 13: HE*3/HE*4 A-Coil Chilled Water Performance Data

SECTION 8: LINE VOLTAGE WIRING

WARNING

To prevent accidental electrical shock, turn the electrical power "OFF" at the main electrical panel (circuit breaker box) and at the local service disconnect before removing the ceiling access panel to perform installation, maintenance and service on this air handler. Homeowners should never attempt to perform any maintenance which requires opening the ceiling access panel. Refer to Figures 7 and 8 for images of the ceiling access panel.

General wire and breaker sizes are shown in Tables 26-29. If sheathed cable is used, refer to NEC National Electrical Code (NFPA 70) or the Canadian Electrical Code, Part I (CSA C22.1) and local codes for additional requirements concerning supply circuit wiring. Electrical data can be found in Tables 14-17.

IMPORTANT - All field wiring must be rated for 60°C or higher. Refer to the wiring diagram on the air handler or the tables in these instructions for more information. Refer to the NEC National Electrical Code (NFPA 70) or the Canadian Electrical Code, Part I (CSA C22.1) and local codes for wiring material requirements.

Line Voltage Wiring Connections

The unit internal wiring is complete except for the power supply and the thermostat wires. See wiring diagram and/or Tables 14-17 for wire size, fuse/circuit breaker size, and ground wire sizes. The use of cable connectors on incoming power supply wires to relieve any strain on wiring is recommended. Follow the steps below to connect the power supply wires.

1. Remove the thumb screws that secure ceiling access panel and slowly swing the panel down to access the air handler.

- 2. Remove the control box cover.
- 3. Install the cable connector in the 7/8 inch diameter hole on the bottom right side of the control box.
- 4. Strip 1/2 inch of the insulation off the end of each wire.
- 5. Insert the wires through the cable connector located in the 7/8 inch diameter hole in the air handler control box.
- 6. Connect the power supply wires to the power supply terminal block or pigtails located on the right side of the control box as follows.

Insert the BLACK line voltage wire into the L1 screw terminal on the power supply terminal block and tighten the set screw to clamp down on the wire or connect it to the BLACK line voltage pigtail with a wire nut or suitable electrical connector rated for the wire size. Insert the WHITE neutral (115 VAC) wire or RED line

voltage wire (208/240 VAC) into the L2 screw terminal on the power supply terminal block and tighten the set screw to clamp down on the wire or connect the RED line voltage wire (208/240 VAC) to the RED line voltage pigtail with a wire nut or suitable electrical connector rated for the wire size.

7. Insert the GREEN ground wire into the ground lug inside the control box and tighten the set screw. **NOTE:** Casing or cabinet must be permanently grounded

in accordance with the National Electrical Code or other applicable codes.

				I	FAN COII	MODEL	.S				
		HE*1/ł	HE*3-**-	*-AC		HE*1/HE*3**-*-BC					
3 Kw Heater Amps - 208 / 240 VAC		10.9 / 12.5					10.9 / 12.5				
5 Kw Heater Amps - 208 / 240 VAC		18.2 /2 0.83					1	8.2 / 20.8	33		
6 Kw Heater Amps - 20/ 240 VAC		21.9 / 25.00					-	21.9/25.0	00		
8 Kw Heater Amps - 208 / 240 VAC		29.2 / 33.33					2	9.2 / 33.3	33		
10 Kw Heater Amps - 208 / 240 VAC		36.5 / 41.66				36.5 / 41.66					
Indoor Blower Motor Code	*J *K										
Indoor Blower Type	1	/3 HP Co	nstant To	orque		1	/3 HP Co	nstant To	orque		
Indoor Blower Amps - 208 / 240 VAC			0.86 / 0.7	5				0.78 / 0.6	8		
Heater - kW	3	5	6	8	10	3	5	6	8	10	
Circuit Load - FLA - 240 VAC	13.36 21.69 25.86 34.19 42.53 13.28 21.61 25.78 34				34.11	42.45					
Minimum Wire Size (60°C) Wire	12 10 8 6 6 12 10 8				6	6					
Minimum Wire Size (75°C) Wire	12 10 8 8 6 12 10 8 8			6							
Minimum Wire Size (90°C) Wire	12 10 8 8 8			12	10	8	8	8			

Table 14: Wiring Requirements – 208/240 VAC Electric Heat HE*1/HE*3-**-*-AC and HE*1/HE*3-**-*-BC

+ Refer to the National Electrical Code Table 250-95 for Non-Sheathed Conductor Ground Wire.

* Ground conductor **must be the same size and temperature rating** as the other conductors listed in Table 14.

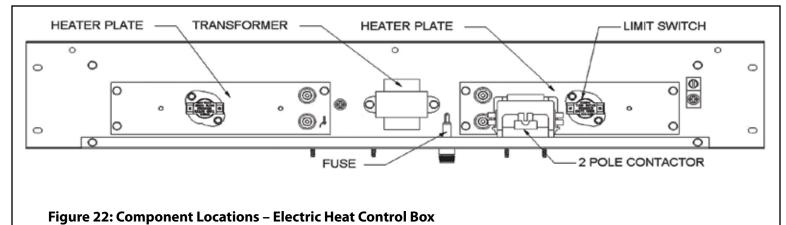
							FAN	COIL N	ODELS						
		HE*1	/HE*3**	*-*-BC			HE*1/	HE*3*	*-*-CC			HE*1	/HE*3**	-*-DC	
3 Kw Heater Amps - 208 / 240 VAC		1	0.9 / 12.	.5		10.9 / 12.5					10.9 / 12.5				
5 Kw Heater Amps - 208 / 240 VAC		18.2 / 20.83				18.2 / 20.83					1	8.2 /20.8	3		
6 Kw Heater Amps - 20/ 240 VAC		21.9 / 25.00				21.9 / 25.00					2	1.9 / 25.0	00		
8 Kw Heater Amps - 208 / 240 VAC		29.2 / 33.33			29.2 / 33.33					29	9.2 / 33.3	33			
10 Kw Heater Amps - 208 / 240 VAC		36.5 / 41.66			36.5 / 41.66					36.5 / 41.66					
Indoor Blower Motor Code	*M			*M				*M							
Indoor Blower Type		1/2 HP	Constan	t Torqu	e	1/2 HP Constant Torque						1/2 HP (Constant	t Torque	
Indoor Blower Amps - 208 / 240 VAC		1	.62 / 1.4	1			1.	30 / 1.1	3		1.99 / 1.73				
Heater - kW	3	5	6	8	10	3	5	6	8	10	3	5	6	8	10
Circuit Load - FLA - 240 VAC	14.12 22.45 26.62 34.95 43.29		43.29	13.80	22.13	26.30	34.63	42.97	14.49	22.82	26.99	35.32	43.66		
Minimum Wir e Size (60°C) Wire	12 10 8 6 6		12	10	8	6	6	12	10	8	6	6			
Minimum Wir e Size (75°C) Wire	12 10 8 8 6		6	12	10	8	8	6	12	10	8	8	6		
Minimum Wir e Size (90°C) Wire	12	12 10 8 8 8		12	10	8	8	8	12	10	8	8	8		

Table 15: Wiring Requirements – 208/240 VAC Electric Heat HE*1/HE*3-**-*-BC, HE*1/HE*3-**-*-CC, HE*1/HE*3-**-*-DC

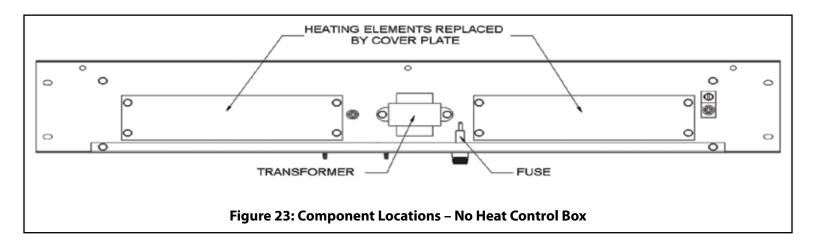
+ Refer to the National Electrical Code Table 250-95 for Non-Sheathed Conductor Ground Wire.

* Ground conductor must be the same size and temperature rating as the other conductors listed in Table 15.

		H	DRONIC FAN COIL MC	DELS	
	HE*2/HE*4- **- *- AA	HE*2/HE*4- **- *- BA	HE*2/HE*4- **- *- BA	HE*2/HE*4- **- *- CA	HHE*2/HE*4- **- *- DA
Indoor Blower Motor Code	*N	*0	*R	*R	*R
Indoor Blower Type	1/ 3 HP C.T.	1/ 3 HP C.T.	1/ 2 HP C.T.	1/ 2 HP C.T.	1/ 2 HP C.T.
Indoor Blower Amps - 115VAC	1.63	1.67	3.64	3.02	3.25
Water Pump Amps	0.52	0.52	0.52	0.52	0.52
Circuit Load - FLA - 115 VAC	2.15	2.19	4.16	3.54	3.77
Minimum Wire Size (6 0°C) Wire	14	14	14	14	14
Minimum Wire Size (7 5°C) Wire	14	14	14	14	14
Minimum Wire Size (9 0°C) Wire	14	14	14	14	14


Table 16: Wiring Requirements – 115 VAC Hot Water Heat HE*2/HE*4-**-*-AA, HE*2/HE*4-**-*-BA, HE*2/HE*4-**-*-CA, HE*2/HE*4-**-*-DA

+ Refer to the National Electrical Code Table 250-95 for Non-Sheathed Conductor Ground Wire.


* Ground conductor must be the same size and temperature rating as the other conductors listed in Table 16.

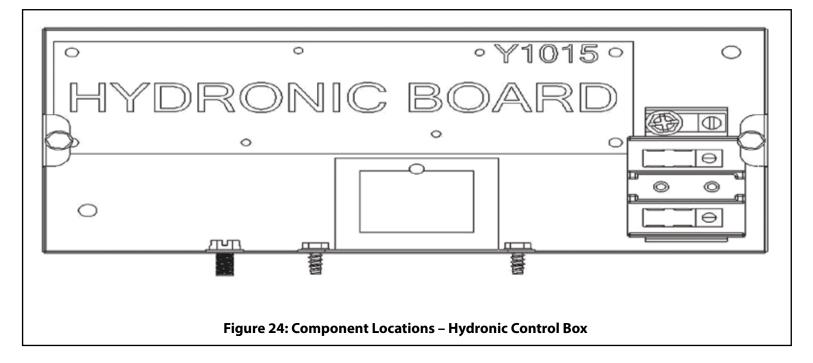

			ELI	ECTRIC HEATER SIZ	ΈS	
		3 kW	5 kW	6 kW	8 kW	10 kW
240 VAC, 60 HZ, 1 PH	BTU	10,236	17,061	20,473	27,297	34,121
	Kw	3	5	6	8	10
230 VAC, 60 HZ, 1 PH	BTU	9,539	15,989	19,078	25,437	31,767
	Kw	2.7956	4.6593	5.5912	7.4549	9.3186
220 VAC, 60 HZ, 1 PH	BTU	8,859	14,765	17,718	23,624	29,530
	Kw	2.5496	4.3273	5.1927	6.9236	8.6545
HEATING ELEMENT CAPACITY	BTU	10,236	17,061	20,473	27,297	34,121
	Kw	3	5	6	8	10

Table 17: Electric Heater Electrical Data

Casing or cabinet must be permanently grounded in accordance with the National Electrical Code or other applicable codes.

SECTION 9: THERMOSTAT WIRING AND CONNECTIONS

Thermostat Wiring

Thermostat wires connect through side of furnace and should be no smaller than 22 gauge. Refer to Table 18 for recommended wire gauge, lengths and maximum current for each wire gauge.

Max.Thermostat Wire Length	Thermostat Wire Gauge	Thermostat Wire Maximum Current
0 - 100 Feet	22	3.0 Amps
0 - 125 Feet	20	3.0 amps
0 - 250 Feet	18	3.0 amps

Table 18: Low Voltage Wire Gauge and Max Lengths

Thermostat wires can enter through the side of the unit. When bringing wiring through the side of the air handler, cable connectors must be installed to hold wiring in place and to relieve any strain on the wiring.

The use of a five-conductor cable from the thermostat to the air handler is recommended for typical heating or heating/cooling installations with a two or three-conductor cable from the air handler to the outdoor unit. The thermostat wire colors and the typical heating/cooling connections are listed in Tables 20 and 21.

A seven-conductor cable from the thermostat to the air handler is recommended for a typical heat pump installation with a fiveconductor cable from the air handler to the outdoor unit. Typical heat pump thermostat wire colors and connections are shown in Table 22.

Thermostat Installation

The thermostat heat anticipator must be set at 0.4 amps if the thermostat has a manual heat anticipator adjustment. This setting should be checked at the time of installation. The thermostat may be a "self-setting" type in which no heat anticipator setting will be found on the thermostat, eliminating the need for field adjustment.

The thermostat should be located on an inside wall in an open area or hallway to more closely sense average room air, preferably where there is air movement back to air handler. The thermostat should not be located within 3 feet of from any windows or supply air registers and should be 52 to 66 inches above the floor.

Maintenance, operating, and/or programming instructions are in the envelope shipped with the thermostat. The envelope should be given to the homeowner or user after the thermostat installation is completed.

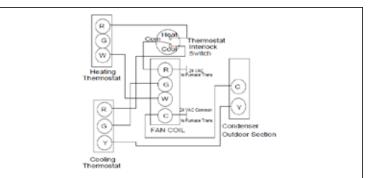
Do not locate thermostat within three feet of any of the following items:

- 1. Supply air registers
- 2. Lights or heat lamps
- 3. Aquariums
- 4. Televisions, stereo, amplifiers, surround sound systems
- 5. Stoves or any cooking appliance
- 6. Refrigerator
- 7. Washer and/or dryer
- 8. Hot water tank
- 9. Sink or near any hot water
- 10. Within 15 feet of any electric space heater
- 11. Within two feet of any sunlight

Separate Heating and Cooling System Using Same Thermostat

If both the air handler and the outdoor unit have transformers, it is necessary to use a thermostat with isolated heating and cooling contacts "RC" and "RH" to prevent interconnection of the two 24 VAC systems. Most newer thermostats have separate heating and cooling contacts for use with an air handler and outdoor unit that each have a 24 VAC transformer. These thermostats have a "RC" terminal for cooling and a "RH" terminal for heating. Connect the RED thermostat wire ("R" circuit) from the outdoor unit to the "RC" terminal on the thermostat and the RED wire ("R" circuit) from the air handler to the "RH" terminal on the thermostat. Refer to Figures 25 - 29 for typical low voltage wire connections.

If the air handler and outdoor unit both have transformers and the thermostat does not have the "RC" and "RH" terminals, connecting the RED wires from the air handler and outdoor unit to the same "R" terminal on the thermostat can result in transformer burnout or it can cause either the air handler or outdoor unit control systems to enter lockout mode. If the thermostat does not have the "RC" and "RH" terminals, purchase a new thermostat with these terminals.


Separate Heating and Outdoor Units Using Separate Thermostats

If the application has a central heating and cooling system, but the hydronic heat and DX cooling are controlled by separate thermostats, the use of a thermostat interlock switch is required in order to prevent heating and cooling from operating at the same time.

When using separate heating and cooling thermostats, a thermostat interlock system must be provided to prevent simultaneous operation of heating and cooling operation. Simultaneous operation can result in equipment overheating, equipment damage, and wasted energy.

Do Not connect the YELLOW wire (cooling) to the thermostat unless an outdoor unit is installed.

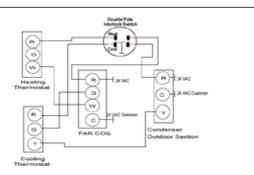
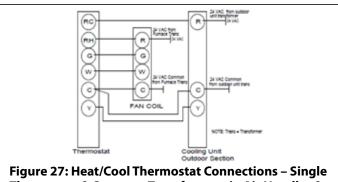



Figure 26: Heat/Cool Thermostat Connections - Separate Thermostats & Separate Transformers in Air Handler and Outdoor Unit

Thermostat & Separate Transformers in Air Handler & Outdoor Unit

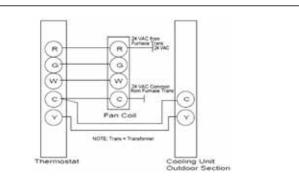


Figure 28: Heat/Cool Thermostat Connections - Single Thermostat & Single Transformer in Air Handler

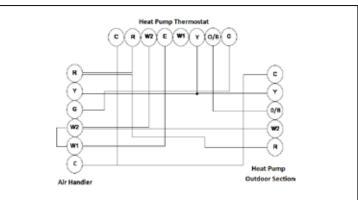


Figure 29: Heat Pump Thermostat Connections - Single Thermostat & Single Transformer in Air Handler

Terminal Designation Description
O/BChangeover valve for heat pump energized constantly in cooling and off/heating
Y22nd Stage Compressor
YCompressor Relay
GFan Relay
RCPower for Cooling
RHPower for Heating
CCommon wire from secondary side of cooling (Optional). Required for fault indication, continuous backlight operation
or remote temperature sensor operation 6 Powered closed 3rd wire for 3-wire zone valve
W/EHeat Relay/Emergency Heat Relay (Stage 1) (3rd Stage Heat in HP2)
W22nd Stage Heat (4th Stage Heat in HP2)
Common (DC) for wired remote temperature sensor
SFrequency signal from remote temperature sensor
+Power (DC) to remote temperature sensor
A1Economizer/Time of Day Output energized in occupied (Morn, Day, and Eve) periods, powered by RC or RH terminal LCompressor diagnostic indicator for systems with diagnostic connection typically found on Heat pump systems or with Copeland's Comfort Alert

Table 19: Typical Thermostat Terminal Designations

Wire Color	Description	Letter Code	Thermostat Connection
RED	24 VAC	RED / R	R
WHITE	Heat (1 st Stage Heat)	WHT / W	W or W1
GREEN	Indoor Fan	GRN / G	G
YELLOW	24 VAC Common (Electric Heat Models)	YEL / C	С
BROWN	24 VAC Common (Hydronic Heat Models)	BRN / C	С

Table 20: Air Handler Low Voltage Pigtail Wire Colors and Connections

		Letter	Thermostat
Wire Color	Description	Code	Connection
RED	24 VAC	RED / R	R
WHITE	Heat (1 st Stage Heat)	WHT / W	W or W1
GREEN	Indoor Fan	GRN / G	G
YELLOW	Cooling	YEL / Y	Y or Y1
BROWN	24 VAC Common	BRN / C	С

Table 21: Typical Heat/Cool Thermostat Wire Colors and Connections

		Letter	Thermostat
Wire Color	Description	Code	Connection
RED	24 VAC	RED / R	R
WHITE	Heat (1 st Stage Heat)	WHT / W	E
GREEN	Indoor Fan	GRN / G	G
YELLOW	Cooling	YEL / Y	Y or Y1
BROWN	24 VAC Common	BRN / C	С
ORANGE	Heat Pump Reversing Valve Solenoid (Most Brands)	ORN / O	0
BLUE	Heat Pump Reversing Valve Solenoid (Some Brands)	BLU / B	В

Table 22: Typical Heat Pump Thermostat Wire Colors and Connections

Typical Heating/ Cooling Wiring Connections

- 1. Open the ceiling access panel.
- 2. Remove the control box cover.
- 3. Install a grommet or a strain relief in the 9/16 inch diameter hole on the top and the left side of the air handler to protect the thermostat wire cable.
- 4. Strip 1/2 inch of the insulation off the end of each wire.
- 5. Insert the wire cable from the thermostat thru the 9/16 inch hole into the control box and place the thermostat wire cable next to the low voltage pigtails. Secure the thermostat wire cable with a strain relief to prevent wire connections from being pulled apart.
- 6. Connect the RED (24 VAC) thermostat wire to the RED air
- 7. Connect the WHITE (1st stage heating) thermostat wire to the WHITE air handler low voltage pigtail wire with a wire nut.
- 8. Connect the GREEN (indoor fan) thermostat wire to the GREEN air handler low voltage pigtail wire with a wire nut.
- 9. Connect the YELLOW (cooling) wire from the thermostat to the YELLOW (cooling) wire from the outdoor unit compressor contactor coil with a wire nut.

NOTE: For models with hydronic heat, also connect these two

YELLOW wires to the YELLOW air handler low voltage pigtail wire.

10. Connect the BROWN (24 VAC common) wire from the thermostat to the air handler low voltage pigtail (YELLOW for electric heat; BROWN for hydronic heat) wire and to the BROWN (24 VAC common) wire from the compressor contactor on the outdoor unit. Fasten the 3 wires together securely with a wire nut.

Typical Heat Pump Wiring Connections

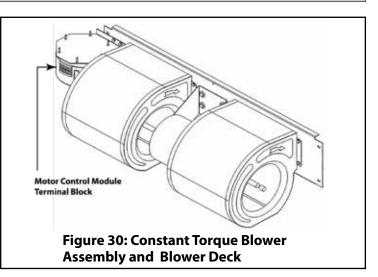
- 1. Open the ceiling access panel.
- 2. Remove the control box cover.
- 3. Install a grommet or a strain relief in the 9/16 inch diameter hole on the top and the left side of the air handler to protect the thermostat wire cable.
- 4. Strip 1/2 inch of the insulation from the end of each wire.
- 5. Insert the wire cable from the thermostat thru the 9/16 inch hole into the control box and place the thermostat wire cable next to the low voltage pigtails. Secure the thermostat wire cable with a strain relief to prevent wire connections from being pulled apart.

- 6. Connect the RED (24 VAC) wire from the thermostat to the RED air handler low voltage pigtail wire and the RED wire from the "R" terminal on the outdoor unit. Fasten the three wires together securely with a wire nut.
- 7. Connect the WHITE (1ststage heating) wire from the thermostat to the WHITE air handler low voltage pigtail wire and the WHITE wire from the "E" terminal on the outdoor unit. Fasten the three wires together securely with a wire nut.
- 8. Connect the GREEN (indoor fan) wire from the thermostat to the GREEN air handler low voltage pigtail wire with a wire nut.
- 9. Connect the YELLOW (cooling) wire from the thermostat to the YELLOW wire from the outdoor unit compressor contactor coil with a wire nut.

NOTE: For models with hydronic heat, also connect these two YELLOW wires to the YELLOW air handler low voltage pigtail wire.

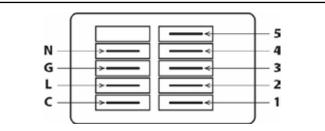
- 10. Connect the BROWN (24 VAC common) wire from the thermostat to the air handler low voltage pigtail (YELLOW for electric heat; BROWN for hydronic heat) wire and to the BROWN (24 VAC common) wire from the "C" terminal on the outdoor unit. Fasten the 3 wires together securely with a wire nut.
- 11. Connect the BROWN (24 VAC common) wire from the thermostat to the air handler low voltage pigtail (YELLOW for electric heat; BROWN for hydronic heat) wire and to the BROWN (24 VAC common) wire from the "C" terminal on the outdoor unit. Fasten the 3 wires together securely with a wire nut.
- 12. Connect the ORANGE (reversing valve solenoid) wire from the thermostat "O" terminal to the ORANGE wire from the "O" terminal on the outdoor unit. Fasten the two wires together securely with a wire nut.

NOTE: If the outdoor unit has a "B" terminal instead of an "O" terminal, connect the BLUE (reversing valve solenoid) wire from the thermostat "B" terminal to the BLUE wire from the "B" terminal on the outdoor unit.


SECTION 9: THERMOSTAT WIRING AND CONNECTIONS

NOTICE: The factory motor speed tap settings are appropriate for most applications. Refer to the blower performance tables in Section 12 before changing the motor speeds from the factory settings.

WARNING


To avoid personal injury or property damage, make certain that the motor leads cannot contact non-insulated metal components of the air handler.

SECTION 10: BLOWER MOTOR SPEED SELECTION AND MOTOR REPLACEMENT

CONSTANT TORQUE MOTOR

This air handler is equipped with a high efficiency constant torque motor that operates on 208/240 VAC for electric heat models and 115 VAC for hydronic heat models. The motor speed tap inputs are 24 VAC. The speed taps can be changed by removing the BLACK wire from the blower motor control module terminal 5 or the RED wire from the blower motor control module terminal 1 and connecting the wires to blower motor control module terminals 2, 3 or 4. Figure 31, Table 23, and Table 24 show the constant torque motor control module terminals and connection definitions.

Figure 31: Constant Torque Motor Control Module Terminals

TERMINAL	CONNECTION
С	Speed Tap Common - 24 VAC Common
L	Supply Voltage – 208/240 VAC – Line 1
G	Ground Connection
N	Supply Voltage – 208/240 VAC – Line 2
1	Low Speed Tap - 24 VAC Input
2	Medium - Low Speed Tap - 24 VAC Input
3	Medium Speed Tap - 24 VAC Input
4	Medium - High Speed Tap - 24 VAC Input
5	High Speed Tap - 24 VAC Input

Table 23: Constant Torque Motor Terminals – Electric Heat Models

TERMINAL	CONNECTION
С	Speed Tap Common - 24 VAC Common
L	Supply Voltage - 115 VAC
G	Ground Connection
Ν	Supply Voltage - Neutral
1	Low Speed Tap - 24 VAC Input
2	Medium - Low Speed Tap - 24 VAC Input
3	Medium Speed Tap - 24 VAC Input
4	Medium - High Speed Tap - 24 VAC Input
5	High Speed Tap - 24 VAC Input

Table 24: Constant Torque Motor Terminals –Hydronic Heat Models

Changing Motor Speeds – Constant Torque Motor

- 1. Turn off all electrical supply circuits to the air handler at the main electrical panel (circuit breaker box) and turn the local air handler service disconnect to the OFF position.
- 2. Loosen the ceiling access panel thumbscrews and lower access panel. Disconnect the speed tap wire(s) connected to blower motor control module terminals 1 through 5 (See Figure 31) and reconnect to the desired terminal(s). Speed tap wire colors are as follows:

Speed Tap Wire Colors:

Speed Tap 5 (High): Black Speed Tap 4 (Med. High): Orange

Speed Tap 3 (Medium): Blue

Speed Tap 2 (Med. Low): Purple

Speed Tap 1 (Low): Red

- 3. Close the ceiling access panel and secure the panel with the thumb screws.
- 4. Turn on **all** electrical supply circuits to the air handler at the main electrical panel (circuit breaker box) and turn the local air handler service disconnect to the ON position.
- 5. Set the thermostat to the desired operating mode and temperature.

SECTION 11: FINAL SYSTEM CHECKOUT AND STARTUP

- 1. Refer to appropriate wiring diagram and recheck all wiring connections. Ensure that all wiring connections are tight.
- 2. Check blower motor connectors to make sure they are not damaged or loose.
- 3. If the control box cover was removed; reinstall control box cover.
- 4. Swing the service access panel into place and secure with the thumbscrews.
- 5. Switch the air handler circuit breakers in the main electrical panel to the ON position.
- 6. Switch the air handler service disconnect switch to the ON position.
- 7. Set the thermostat FAN Switch to the ON position to enable the continuous fan mode.
- 8. Check for air leaks at all duct connections and seal any leaks that are found.
- 9. Set the thermostat FAN switch to the AUTO position.
- 10. Set the thermostat HEAT/COOL switch to the COOL position and adjust the set point below the room temperature to enable the cooling mode.

- 11. Check for proper cooling operation per the outdoor unit installation and operating instructions.
- 12. *Electric Heat Models Only:* Switch the thermostat HEAT/COOL switch to the HEAT position and adjust the set point above the room temperature to enable the heating mode. Check for proper heating operation. Set the thermostat to the desired operating mode and adjust the temperature setting for comfort conditions.
- 13. **Hydronic Heat Models Only:** Switch the thermostat HEAT/COOL switch to the OFF position. The heating mode in models with hydronic heating system should not be switched on until system is filled and air is purged from hot water coil using the following procedure.

Filling Hydronic Heating System With Water, Purging Air From System, and System Startup

- 1. The thermostat HEAT/COOL switch must be in the OFF position.
- 2. Fill and pressurize the water heater and water coil.
- 3. Check for water leaks and seal any leaks that are found.
- 4. Turn the water heater on and set water temperature at 130°F for now.
- 5. Vent air from the water tank by opening a hot water spigot or faucet.
- 6. Vent and flush the supply and return water lines by attaching a hose to the volume purge valve and running purge water to a safe location. Run approximately 5 gallons of water at a high flow rate to purge.
- 7. Switch the air handler circuit breaker in the main electrical panel to the ON position if it is not already in the ON position.
- 8. Switch the air handler service disconnect switch to the ON position if it is not already in the ON position.
- 9. Set the thermostat HEAT/COOL switch to the HEAT position and adjust the set point above the room temperature to call for heat. The fan and pump should start simultaneously. The water coil should be warm after a few minutes of operation.
- The air-handler is rated for water temperatures of 130°-180°F. Set water heater temperature at design temperature and take proper safeguards for water usage at supply points per local codes and safety considerations.
 NOTE: If CPVC or PEX hot water tubing is used, do not set the water temperature above 150°F.
- 11. Set thermostat HEAT/COOL switch to the desired operating mode and adjust the temperature setting for comfort conditions.

SECTION 12: BLOWER PERFORMANCE TABLES

Model No.	Nominal	Blower	Motor	Motor	Blower	Motor	CFM@	CFM@	CFM@	CFM@	CFM@
	Cooling Tons	HP	Volts	Code	Wheel Size	Speed Tap	0.10″W.C.	0.20″W.C.	0.30″W.C.	0.40″ W.C.	0.50″ W.C.
						1	541	482	416	357	315
HE1-**-*-A Electric						2	646	598	541	482	438
HE3-**-*-A	1.5 - 2.0	0.33	240	*J	(2) 7 x 8	3	735	694	659	597	549
Electric						4	840	804	770	735	672
						5	888	851	819	785	739
						1	570	480	398	327	257
HE1-**-*-B Electric						2	669	588	512	450	387
HE3-**-*-B	1.5 - 2.5	0.33	240	*K	(2) 7 x 9	3	761	691	618	557	499
Electric						4	865	797	730	667	609
						5	915	851	782	724	657
						1	906	837	762	701	627
HE1-**-*-B Electric						2	1019	955	887	822	768
HE3-**-*-B	1.5 - 2.5	0.5	240	*M	(2) 7 x 9	3	1101	1043	987	922	846
Electric						4	1202	1151	1098	1041	981
						5	1312	1258	1209	1151	1105
						1	928	836	750	689	617
HE1-**-*-C Electric						° 2	1024	948	866	798	739
HE3-**-*-C	1.5 - 3.0	0.5	240	*M	(2) 7 x 9	3	1131	1062	989	917	846
Electric						4	1225	1160	1091	1026	957
						5	1327	1267	1211	1138	1075
						1	987	922	849	769	696
HE1-**-*-D Electric						2	1073	1008	945	880	817
HE3-**-*-D	1.5 - 3.0	0.5	240	*M	(2) 7 x 9	3	1191	1127	1071	1006	949
Electric						4	1285	1241	1186	1127	1047
						5	1400	1332	1290	1246	1191

Table 25: HE*1/HE*3 Blower Performance – CFM – Without Air Filters

Minimum CFM for Electric Heat: 3kW = 195 CFM; 5kW = 325 CFM; 6kW = 390 CFM; 8kW = 520 CFM; 10kW = 650 CFM

Model No.	Nominal	-	Motor	Motor Code	Blower Wheel	Motor	CFM@ 0.10"W.C.	CFM@ 0.20"W.C.	CFM@ 0.30"W.C.	CFM@ 0.40"W.C.	CFM@ 0.50"W.C.
	Cooling	HP	Volts	Code	wheel	Speed					
HE1-**-*-A Electric						1	0.28	0.30	0.33	0.36	0.38
	1.5 - 2.0	0.33	240	*J	(2) 7 x 8	2	0.36	0.39	0.43	0.45	0.48
HE3-**-*-A Electric					(_) / / 0	3	0.47	0.50	0.53	0.56	0.59
						4	0.62	0.64	0.67	0.70	0.74
						5	0.69	0.72	0.75	0.78	0.81
HE1-**-*-B						1	0.27	0.30	0.33	0.35	0.37
Electric						2	0.35	0.38	0.41	0.44	0.47
HE3-**-*-B	1.5 - 2.5	0.33	240	*K	(2) 7 x 9	3	0.44	0.47	0.50	0.53	0.56
Electric						4	0.55	0.59	0.62	0.66	0.69
						5	0.62	0.65	0.68	0.72	0.75
HE1-**-*-B		- 2.5 0.5	240	*M	(2) 7 x 9	1	0.61	0.65	0.66	0.68	0.71
Electric						2	0.74	0.78	0.81	0.83	0.86
HE3-**-*-B	1.5 - 2.5					3	0.87	0.92	0.95	0.97	0.99
Electric						4	1.08	1.11	1.13	1.16	1.20
						5	1.33	1.36	1.41	1.43	1.46
HE1-**-*-C						1	0.51	0.54	0.57	0.61	0.64
Electric						2	0.62	0.66	0.70	0.72	0.76
HE3-**-*-C	1.5 - 3.0	0.5	240	*M	(2) 7 x 9	3	0.75	0.78	0.82	0.85	0.88
Electric						4	0.88	0.92	0.96	0.98	1.04
						5	1.08	1.12	1.13	1.16	1.21
						1	0.75	0.78	0.81	0.85	0.88
HE1-**-*-D Electric						2	0.90	0.94	0.95	1.00	1.03
HE3-**-*-D	1.5 - 3.0	0.5	240	*M	(2) 7 x 9	3	1.10	1.13	1.16	1.16	1.20
Electric						4	1.35	1.38	1.42	1.46	1.50
						5	1.66	1.70	1.73	1.77	1.80

Table 26: HE*1/HE*3 Blower Performance – Motor Amps – Without Air Filters

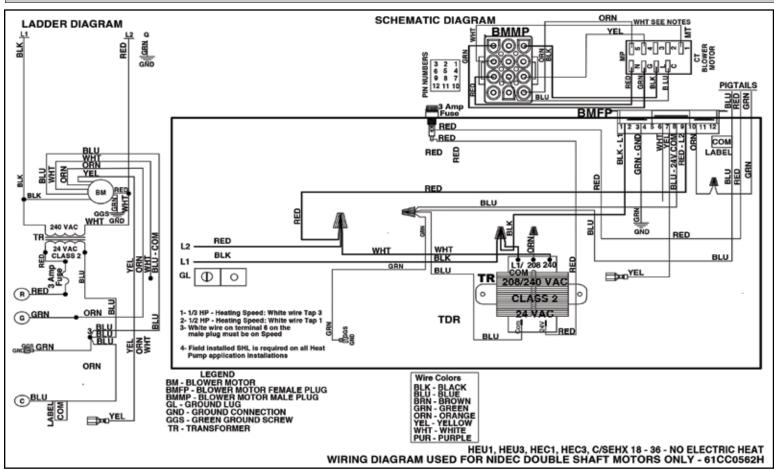

Model No.	Nominal		Motor	Motor	Blower	Motor	CFM@	CFM@	CFM@	CFM@	CFM@
	[°] Cooling Tons	HP	Volts	Code	Wheel Size	Speed	[•] 0.10″W.C.	0.20″W.C.	0.30″W.C.	0.40″W.C.	0.50″W.C.
HE*2***A Hydronic					-	1	533	485	439	397	350
					-	2	629	589	546	508	457
HE*4***A	1.5 - 2.0	0.33	115	*N	(2) 7 X 8	3	728	694	658	625	579
Hydronic					-	4	832	801	761	727	680
						5	886	857	818	786	740
HE*2***B						1	556	486	426	363	291
Hydronic						2	646	593	541	476	423
HE*4***B	1.5 - 2.5	0.33	115	*0	(2) 7 X 9	3	749	699	651	598	555
Hydronic						4	844	798	749	704	657
						5	897	854	809	764	721
						1	883	834	787	737	700
HE*2***B Hydronic					-	2	978	926	885	834	791
HE*4***B	1.5 - 2.5	0.50	115	*R	(2) 7 X 9	3	1075	1033	991	946	905
Hydronic						4	1192	1149	1105	1071	1029
		~	-			5	1302	1253°	1213	1176	1138
						1	903	845	791	732	665
HE*2***C Hydronic						2	1016	958	903	853	789
HE*4***C	1.5 - 3.0	0.50	115	*R	(2) 7 X 9	3	1118	1065	1010	958	912
Hydronic						4	1232	1179	1135	1089	1047
						5	1310	1261	1221	1180	1137
						1	901	837	781	716	658
HE*2***D Hydronic						2	992	939	876	823	753
HE*4***D	1.5 - 3.0	0.50	115	*R	(2) 7 X 9	3	1090	1043	987	934	878
Hydronic						4	1200	1152	1107	1061	1012
						5	1297	1252	1205	1161	1111

Table 27: HE*2/HE*4 Blower Performance – CFM – Without Air Filters

Model No.	Nominal Tons	Motor HP	Volts 1 Ph. 50/60	Motor Code	Blower Wheel	Motor Tap	AMPS @ 0.10" W.C.	AMPS @ 0.20" W.C.	AMPS @ 0.30" W.C.	AMPS @ 0.40" W.C.	AMPS @ 0.50" W.C
HE*2***A						1	0.52	0.56	0.61	0.65	0.70
Hydronic						2	0.75	0.79	0.84	0.88	0.92
HE*4***A	1.5 - 2.0	0.33	115	*N	(2) 7 X 8	3	1.02	1.06	1.08	1.14	1.21
Hydronic						4	1.30	1.36	1.42	1.46	1.50
						5	1.53	1.56	1.63	1.66	1.71
HE*2***B						1	0.54	0.58	0.63	0.68	0.74
Hydronic						2	0.71	0.76	0.81	0.88	0.94
HE*4***B	1.5 - 2.5	0.33	115	*0	(2) 7 X 9	3	1.01	1.04	1.08	1.14	1.22
Hydronic						4	1.32	1.37	1.45	1.49	1.54
						5	1.57	1.63	1.67	1.72	1.78
HE*2***B					-	1	1.39	1.44	1.51	1.53	1.55
Hydronic			115	*R		2	1.72	1.76	1.82	1.88	1.93
HE*2***B	1.5 - 2.5	0.50			(2) 7 X 9	3	2.20	2.25	2.29	2.32	2.41
Hydronic	· ·					4	2.77	2.90	2.94	3.04	3.02
						5	3.54	3.53	3.64	3.68	3.65
HE*2***C						1	1.20	1.25	1.31	1.36	1.41
Hydronic						$ \begin{array}{c} 1 \\ 2 \\ (2) 7 \times 9 \\ \hline 4 \\ 5 \\ 1 \\ 2 \\ 4 \\ 5 \\ 1 \\ 2 \\ 1 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	1.59	1.62	1.68	1.71	1.76
HE*4***C	1.5 - 3.0	0.50	115	*R	(2) 7 X 9	3	1.93	1.99	2.06	2.08	2.15
Hydronic						4	2.52	2.57	2.61	2.66	2.74
						5	3.15	3.19	3.25	3.29	3.35
HE*2***D						1	1.21	1.29	1.32	1.38	1.44
Hydronic						2	1.47	1.53	1.63	1.66	1.68
HE*4***D	1.5 - 3.0	0.50	115	*R	(2) 7 X 9	3	1.89	1.93	2.01	2.04	2.08
Hydronic						4	2.40	2.45	2.52	2.54	2.60
						5	2.86	2.96	3.02	3.04	3.10

Table 28: HE*2/HE*4 Blower Performance – Motor Amps – Without Air Filters

SECTION 13: WIRING DIAGRAMS

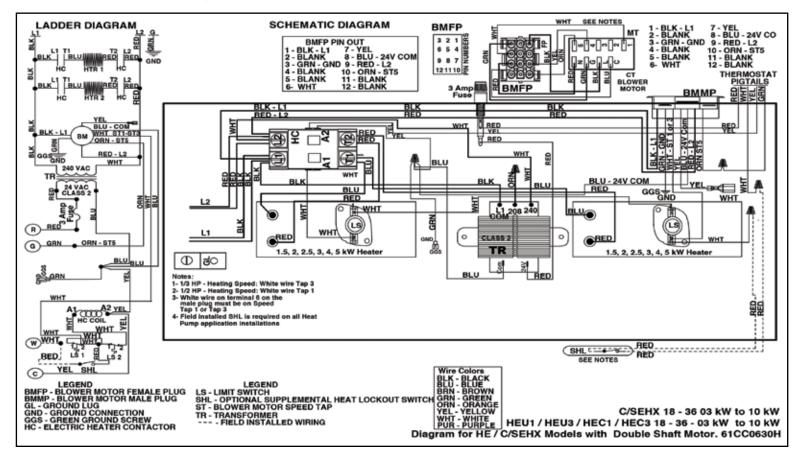


Figure 33: HE*1/HE*3 – 03kW to 10kW Electric Heat – Constant Torque Motor

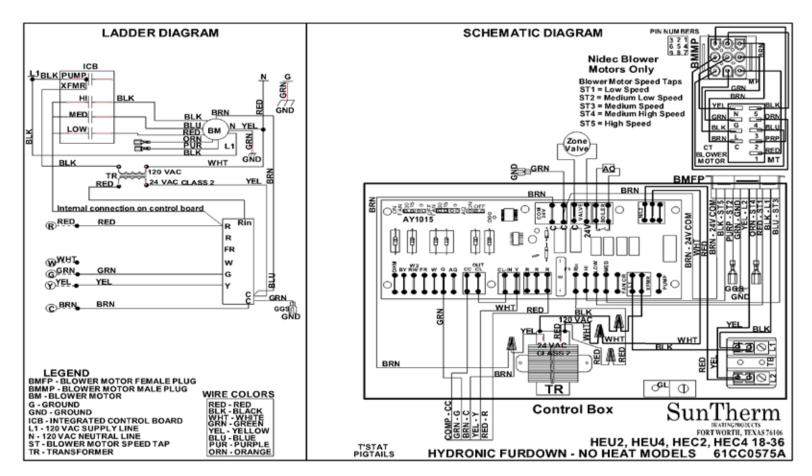


Figure 34: HE*2/HE*4 – No Hydronic Heat – Constant Torque Motor

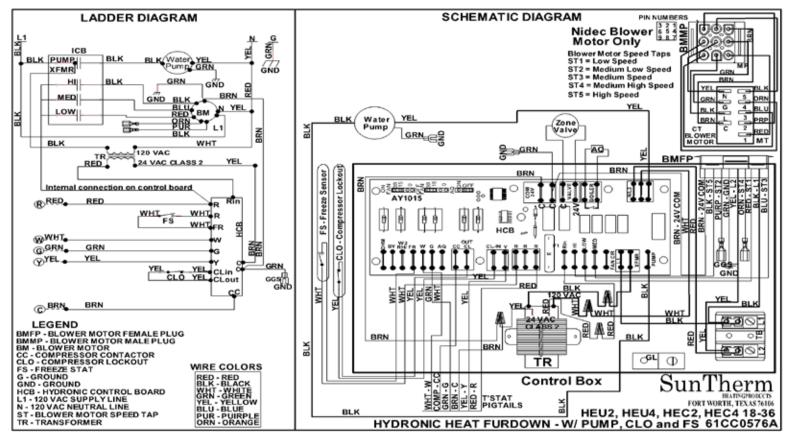


Figure 35: HE*2/HE*4 – Hydronic Heat With Pump – Constant Torque Motor

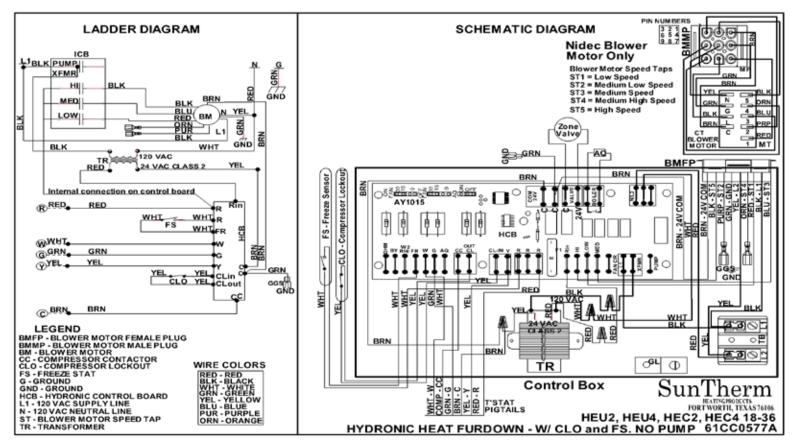


Figure 36: HE*2/HE*4 – Hydronic Heat No Pump – Constant Torque Motor